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ABSTRACT

Roberson, Brian A. Ph.D., Purdue University, August, 2005. The Colonel Blotto
Game with Applications to the Economic, Military and Political Sciences. Major
Professors: Dan Kovenock and James C. Moore.

In the Colonel Blotto game, two players simultaneously distribute forces across n
battlefields. Within each battlefield, the player that allocates more force wins. The
payoff of the game is the proportion of the wins on the individual battlefields. An
equilibrium of the Colonel Blotto game consists of a pair of n-variate distributions.
Chapter 1 demonstrates how to separate the players’ best response correspondences
into a set of univariate marginal distributions and a mapping of this set into an
n-variate distribution; fully characterizes the equilibrium univariate marginal distri-
butions for this class of games; and constructs corresponding equilibrium n-variate
distributions.

Chapter 2 compares centralized to decentralized electoral competition in a model
of redistributive politics with local public goods. In this setting, the level of inequality
arising from each party’s equilibrium redistribution schedule is higher in a centralized
system. In addition, if the utilities provided by the local public goods are above a
minimal threshold, then centralization is also found to create greater inefficiencies
in the provision of the local public goods. However, the inefficiency of centralization
is due to the targetability of local public goods and the ability to share resources
across jurisdictions not to interjurisdictional externalities or heterogeneities in the
production of or preferences for local public goods.

Chapter 3 examines electoral competition in a model of redistributive politics
with heterogeneous voter loyalties to political parties. We construct a natural mea-
sure of “party strength” based on the sizes and intensities of a party’s loyal voter

segments and demonstrate how party behavior varies with the two parties’ strengths.
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vii

In equilibrium, parties target or “poach” a strict subset of the opposition party’s
loyal voters: offering those voters a high expected transfer, while “freezing out” the
remainder with a zero transfer. The size of the subset of opposition voters frozen
out and, consequently, the level of inequality in a party’s equilibrium redistribution
schedule is increasing in the opposition party’s strength. We also construct a measure
of “political polarization” that is increasing in the sum and symmetry of the parties’
strengths, and find that the inequality of the implemented policy is increasing in

political polarization.
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1. The Colonel Blotto Game

The Colonel Blotto game, which originates with Borel (1921), is a constant-sum game
involving two players, A and B, and n independent battlefields. A has X4 units of
force to distribute among the battlefields, and B has Xp units. Each player must
distribute their forces without knowing the opponent’s distribution. If A sends z%
units and B sends z% units to the kth battlefield, the player who provides the higher
level of force wins battlefield k. The payoff for the whole game is the proportion of
the wins on the individual battlefields. The first solution of this game appears in
Borel and Ville (1938) who solve the problem for the case of n = 3 and X4 = Xp.
Gross and Wagner (1950) extend this solution to allow for any finite n > 3, but still
require that X, = Xp.

This paper extends the literature on the Colonel Blotto game by completely char-
acterizing the equilibrium univariate marginal distributions. Since the appearance
of the solution to the symmetric case, it has been an open question whether uni-
form univariate marginal distributions are a necessary condition for equilibrium.! We
show that the answer to this question is yes. To characterize the equilibrium univari-
ate marginal distributions, we utilize n-copulas, the functions that map univariate
marginal distributions into joint distributions, to separate the players’ best response
correspondences into a set of univariate marginal distributions and a mapping of this
set into an n-variate distribution.? The characterization of the equilibrium univari-
ate marginal distributions presented here also allows us to extend the Colonel Blotto
game by allowing the players to have asymmetric forces.

The Colonel Blotto game is a fundamental model of strategic resource allocation

in multiple dimensions. Strategic resource allocation in a single dimension, such

1See for example Gross and Wagner (1950) and Laslier and Picard (2002) who discuss this issue.
2See Nelsen (1999) for an introduction to copulas.
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as the all-pay auction, has been widely used in economics to model contests such
as political campaigns, political lobbying, research and development races, litigation
and a number of other applications. Most if not all of these applications have multiple
dimension analogs. In addition, the Colonel Blotto game has recently been used
to analyze electoral competition over redistribution of a fixed budget (Laslier and
Picard (2002), Laslier (2002)). In the model of redistributive politics candidates
simultaneously announce how they will allocate a budget, if elected, by making
binding promises to each voter. Each voter votes for the candidate offering the higher
level of utility, and each candidate’s payoff is the vote share that they receive. The
Colonel Blotto game with asymmetric forces, examined in this paper, corresponds
directly to a model of redistributive politics in which one candidate has a valence
advantage.

Section 2 presents the model. Section 3 completely characterizes the equilibrium
univariate marginal distributions of the Colonel Blotto game. Section 4 demonstrates

the existence of n-copulas with the necessary properties. Section 5 concludes.

1.1 The Model

Players

Two players, A and B, simultaneously allocate their forces, X4 and X p respectively,
across a finite number, n > 3, of homogeneous battlefields.® Each battlefield j has a
payoff of }7 Each player’s payoff is the sum of the payoffs across all of the battlefields
or, equivalently, the proportion of the battlefields to which the player sends a higher

level of force. Let X4 < Xp. In the case that the players allocate the same level of

3The case of n = 2, with symmetric and asymmetric forces, is discussed by Gross and Wagner
(1950). Moving from n = 2 to n > 3 greatly enlarges the space of feasible n-variate distribution
functions, and the equilibrium strategies examined in this paper differ dramatically from the case
of n=2.
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force to a battlefield, player B wins that battlefield.* The force allocated to each
battlefield must be nonnegative. For player 4, the set of feasible allocations of force

across the n battlefields is denoted by

n
B, = {X ERT_HZ.’E‘] < Xl} .
=1
Strategies

It is well known that for %X B < X4 < Xp there is no pure strategy equilibrium for
this class of games.® A mixed strategy, which we term a distribution of force, for
player ¢ is an n-variate distribution function P; : R% — [0, 1] with support contained
in the set of player i’s feasible allocations of force, 28;, and with one-dimensional

marginal distribution functions {Fi” } one univariate marginal distribution

je{lv“an},
function for each battlefield 7. The n-tuple of player ¢’s allocation of force across the
n battlefields is a random n-tuple drawn from the n-variate distribution function F;

n

with the set of univariate marginal distribution functions {Fij }j=1'

The Colonel Blotto game
The Colonel Blotto game, which we label
CB {XA,XB,’I’L},

is the one-shot game in which players compete by simultaneously announcing distri-
butions of force, subject to their budget constraints, each battlefield is won by the
player that provides the higher allocation of force on that battlefield, where player
B wins the battlefield in the case that both players allocate the same level of force
to that battlefield, and players’ payoffs equal the proportion of battles won.

4The specification of the tie-breaking rule does not affect the results as long as %X B < Xa. In the
case that %X B > X a, this specification of the tie-breaking rule ensures weak lower semicontinuity
of the players’ best response correspondences and hence an equilibrium (see Dasgupta and Maskin
(1986)).

5In the case that -};X B > X4, there, trivially, exists a pure strategy equilibrium, and player B wins
all of the battlefields.
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1.2 Optimal Univariate Marginal Distributions

To completely characterize the equilibrium univariate marginal distribution func-
tions, we utilize n-copulas, the functions that map univariate marginal distribution

functions into joint distribution functions.

Definition: Let I denote the unit interval [0,1]. An n-copula is a func-

tion C from I™ to I such that

1. For all x € I, C (x) = 0 if at least one coordinate of x is 0, and if

all coordinates of x are 1 except z, then C (x) = zy.

2. For every x, y € I"™ such that z; < y; for all k € {1,...,n}, the

C-volume of the n-box [z1,y1] X ... X [Tn, Yn),

Vo (boyl) = ALALT . ARALC (1)

Tn—1

where
Ag.’;C(t) =C (tl, ceesbl—1y Uky Chtls - - ,tn)

—C (tlv N P xkatk+1a ree 1tn)

is greater than or equal to 0.

Given the definition of an n-copula, we can state the crucial property of n-copulas

that we will use.

Theorem 1 [Sklar’s Theorem in n-dimensions]: Let H be an n-
variate distribution function with univariate marginal distribution func-
tions Fy, Fa, ..., F,. Then there exists an n-copula C such that for all
x € R",

H(xy,...,xzp) = C(F1(z1),..., Fu(z0)) (1.1)
Conversely, if C is an n-copula and Fy, Fy, ..., Fy, are univariate distri-
bution functions, then the function H defined by equation 1 is an n-

variate distribution function with univariate marginal distribution func-

tions Fy, Fy, ..., F,.
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The proof of the two-dimensional version of Sklar’s theorem is due to Sklar (1959).
For a proof of the n-dimensional version see Schweizer and Sklar (1983).
One additional definition that will be used throughout the paper is the support

of an n-variate distribution.

Definition: The support of an n-variate distribution function, H, is the

complement of the union of all open sets of R with H-volume zero.

We now show that the univariate marginal distribution functions and the n-copula

are separate components of the players’ best response correspondences.

Proposition 1: Let :1Xp < X4 < Xp. In CB{Xy4, Xp,n} each
player’s best response correspondence can be separated into the uni-
variate marginal distribution functions and n-copula components. In
particular, for a given P_; the Lagrangian of each player’s optimization

problem® can be written as

n oo
where the set of univariate marginal distribution functions {Ff };;1 sat-
isfy the constraint that there exists an n-copula, C', such that the sup-
port of the n-variate distribution C (F}! (z!),..., F* (2™)) is contained in
{x ERY Y27 =20 Eps (z) = Xi}-

Proof: In the game CB {X4, Xg,n}, for a given P_; each player maxi-

mizes the sum of the expected payoffs across the individual battlefields

~F’, (z)dF}
m}ngz_:/o - 7. (x) dF;

8This Lagrangian is for the case that for all battlefields both players’ univariate marginal distri-
butions do not place an atom on the same value. Clearly, in any optimal strategy this holds.
However, it is straightforward to incorporate the tie-breaking rule into the Lagrangian of each
player’s optimization problem.
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subject to the constraint that the support of the distribution of force

P; is contained in B; or equivalently the Pi-volume over the region
{x e Ry 30 27 > Xi} is 0.
Since %X B < X4 < XB, in any optimal strategy each player will allocate

all of their forces with probability 1,

i=1

Let G; denote the distribution function of 3 7_, ! and note that G; (2) is

P'I‘pi

the P;-volume over the region {x € R%| Z?:1 2 < z}. Since each player
allocates all of their forces with probability 1, it follows that
0 lf 2 < X;

Gi (Z) =

Equivalently, the P-volume over the region {x € R%| Z?zl 2 < Xi} is
0. Since the P;-volume over

{xeRﬂim" <Xi}U{xelR’}r'|imj >Xi}
j=1

i=1
is 0, the support of P; is contained in {x e Ry | Z?:l o = Xi}.

In addition since each player allocates all of their forces with certainty,
it follows directly that all of their forces are allocated in expectation,

ie. FEp (Z?=1 ! ) = X;. Let {F/ }?:1 be the set of univariate marginal

distribution functions of F;. Finally, noting that

EIPz' (z $Z> = Z EF] (:L)a
J=1 7=1

and that from Theorem 1 the n-variate distribution function P; is equiv-

n

alent to the set of univariate marginal distribution functions {Fij}j=1

combined with an appropriate n-copula, C, the result follows directly.

Q.ED.
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Note that from Theorem 1 an n-variate distribution function is equivalent to a set

. . . . . . . iln
of univariate marginal distribution functions, {F,;J}j_l,

and an n-copula, C. This
in combination with the payoff function of this class of games allows us to separate
the players’ best response correspondences into the set of univariate marginal dis-
tribution functions and n-copula components. Moreover, contrary to the concerns
stated by Gross and Wagner (1950), the existence of equilibrium n-variate distribu-
tion functions without a connected support is not problematic. Connectedness of
the support is a property that arises from the m-copula. Proposition 1 makes no
requirement on the connectedness of the resulting n-variate distribution function.”
In particular, the only requirement on the set of feasible n-copulas is that given a set
of equilibrium univariate marginal distribution functions, {Fij };.121, the combination
of the n-copula and the set of equilibrium univariate marginal distribution functions
must allocate all of the player’s forces with probability 1.

We begin by completely characterizing the set of equilibrium univariate marginal
distribution functions for ;{—1 < %g < 1 and then move on to constructing sufficient
n-copulas. Theorem 2 examines the case of % < —% < 1 and Theorem 3 examines
the case of =12 < 3%1 < 28 For the case that 2 < %’} < —L-, it is conjectured
that the characterization of the equilibrium univariate marginal distributions given

in Theorem 3 applies. The crucial issue for this parameter range is the existence of

sufficient n-copulas, which is yet to be established.?

Theorem 2: Let X4, X, and n > 3 satisfy % < L;g < 1. The unique

Nash equilibrium univariate marginal distribution functions of the game

"In fact, for -f‘; < -%‘; < 1 the n-variate distributions that are examined in Section 4 have dis-
connected supports. However, there are also sufficient n-variate distributions that have connected
supports.

8The case that £ Xp > X4 is trivial.

9For % < %‘3 < ;Ii—l and given the univariate marginal distributions in Theorem 3, the construction
of sufficient n-copulas that is given in Section 4 provides a sufficient n-copula for player A but not
for player B.
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CB {X 4, X,n} are for each player to allocate its forces according to the

following univariate distribution functions. For player A

Vie{l,....,n} Fi(x)= (1~§g)+?§g(§g) z € [0,2Xp)

Similarly for player B

X3)

Vie{l,...,n} F{;(z) =% € 0,2
The expected payoff for player A is and the expected payoff for player

BIS].—-2X

The formal proof of Theorem 2 is given in the appendix. However, it. is useful
to provide some intuition for the uniqueness of the univariate marginal distribution
functions.

Beginning with the characterization of n independent and identical simultaneous
two-bidder all-pay auctions with complete information, let F,-j represent bidder i’s
distribution of bids for auction 7, and ’U{ represent the value of auction j for bidder
i. Each bidder i’s problem is

max Z/ [V F?, (z) — x] dF).

{7}, 5=
Since each auction is independent, we can apply the equilibrium characterization of
the single all-pay auction with complete information (see Hillman and Riley (1989)
and Baye, Kovenock, and de Vries (1996)). Thus, there exists a unique equilibrium
distribution function Fij for each auction j. For each auction 7 and bidder ¢ we have

the following three cases

If o] >l F{ (2) = o z € [0,v]}]
If ol =07, Fl(z)=% z € [0,]]

—t -1

. . . J o i
If vl <!, Ff(z)=<v—'v’7i>+ﬁ— z € [0,v]].
Now consider a Colonel Blotto game CB {X 4, X5, n}. From Equation 2 in Propo-

sition 1, each player’s Lagrangian can be written as

n

{m?x [/\1;/ [nl)\ F?, (a:)—x] dF]] + XX
FI YT < 0
i Jj=1 j=1
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subject to the constraint that there exists an n-copula, C, that results in an n-variate
distribution ~ C (F} (z'),...,F(2™))  with  support  contained  in
{x € R%| Z;;l 2 = Xi}. Assuming that a sufficient n-copula exists, the appendix
establishes a one-to-one correspondence between the set of equilibrium univariate
marginal distribution functions and the equilibrium distribution functions of bids
from a unique set of n independent and identical simultaneous two-bidder all-pay
auctions. Section 4, then, establishes the existence of sufficient n-copulas.

The following Theorem addresses the remaining case of -1 < %4 < 2,
XB n

Theorem 3: Let X4, Xg, and n > 3 satisfy ﬁ < % < % The unique
Nash equilibrium univariate marginal distribution functions of the game
CB {Xa,Xp,n} are for each player to allocate its forces according to the

following univariate distribution functions. For player A

Vie{l,...,n} Fi(m)=(1-2)+&(2) z€[0,X4]

Similarly for player B

2:1:()(,4—571&)

3 S [OaXA]

V]E{l,,’n} Fi];(ilf)-_— (X)q(\’A_fﬁ\
1 :EZXA

The expected payoff for player A is % - % and the expected payoff for

2X
n2X,'

player Bis 1 — % —+
The formal proof of Theorem 3 is similar to the proof contained in the appendix
for Theorem 2, and is thus omitted.
1.3 Existence of Sufficient n-copulas

Subject to the constraint that there exist sufficient n-copulas, Theorems 2 and 3
characterize the unique sets of equilibrium univariate marginal distribution functions
for 2 < ¥4 < 1 and - < %4 < 2 respectively. There is no known existence

n Xp n—1 XB n

result for an n-copula, C, with the necessary property that, given a set of univariate
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n

marginal distribution functions {Fij } the support of the n-variate distribution

=
C (F} (z'),...,F(z")) is contained in {x eERY Y a7 =30 Eps (z) (= Xi)}.
However from Theorem 1, it is sufficient to show that for each player there exists
an n-dimensional distribution function that allocates all of that player’s forces with
probability 1 and that provides the unique sets of equilibrium univariate marginal

distribution functions characterized in Theorems 2 and 3.

Theorem 4: For each unique set of equilibrium univariate marginal dis-
tribution functions, {Ff }:;1’ characterized in Theorems 2 and 3, there
exists an n-copula, C, such that the support of the n-variate distribution
function C(F}(2Y),...,Fr(z")) is contained in

(e REIE® — T By ) 10}

The rest of this section is devoted to a proof of this theorem. There are multiple n-
variate distribution functions (and thus multiple n-copulas) that satisfy the necessary
conditions. In the discussion that follows, we will focus on a new and novel way to
construct sufficient n-variate distribution functions for this class of games. Recall
that the ceiling function [z] gives the smallest integer greater than or equal to z,
and that the floor function |z| gives the largest integer less than or equal to . We

begin with the case that % < %‘3 < 1 as in Theorem 2. This proof is for player A.

X

The proof for player B follows directly as the special case of player A where £4 = 1.

The construction of the n-variate distribution function is outlined as follows.

1. Player A randomly selects n— [%};ﬁ] of the battlefields and provides zero forces

to those battlefields.
2. If [%}] — L%}:J = 1, then:

(a) Player A randomly selects [%J of the remaining [%-l battlefields.

(b) On the randomly selected |2Z4 | battlefields, player A randomizes con-
X5

tinuously on [O, %X B] on each of these battlefields such that, letting z be
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11

the sum of player A’s allocations of force on these L%-(%J battlefields and

G (z) be the distribution of z,

(s—(xa-2X5)) (1-[ 2]+ 74

G(z) = TX5 XB) zZ € [XA—%XB,XA)

1 ZZXA

(c) Defining the allocation of force on the remaining battlefield as X4 — 2, it
follows directly that the univariate distribution of force on the remaining
battlefield places mass [%‘é—?] - % at 0 and randomizes continuously
on [0, %X B] with the remaining mass. In addition for all realizations,

x € R}, of this strategy > 7_, /) = X4 with probability 1.

nX 4

(d) There are ( ﬁ:ﬂm]) <[le 1) ways of dividing n battlefields into disjoint
xB

(n - [’—%:D—subsets, L%{%j -subsets, and 1-subsets. Constructing an n-

nX4
variate distribution as described above on each of the |, [ *B 1
ESVAN

possible divisions of the n battlefields into disjoint (n — [%ﬁ*.’ )-subsets,

LE)—%\J -subsets, and 1-subsets and weighting each of these n-variate dis-

EE

tribution functions by [(Y"—{A]) <1 o )] , the n-variate distribution
Xp

function formed by taking the sum of these weighted n-variate distribution

functions has univariate marginal distribution functions which each have

a mass point of (1 - %) at 0 and randomize continuously on [O, %X B].

3. If "%-l — [%J =0, then:

(a) On the remaining % battlefields, player A randomizes continuously on
[0, %X B] on each of these battlefields such that, letting z be the sum
of player A’s allocations of force on these battlefields and G (z) be the

distribution of z,
0 z2< Xy

1 2> X4

G(z)=

Thus, for all realizations, x € R, of this strategy >_7_, ) = X4 with

probability 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

n\'g
T,
Xp

(b) There are ( ) ways of dividing the n battlefields into disjoint

(n - %)-subsets and %‘;‘-\-subsets. Constructing an n-variate distri-

bution as described above on each of the ( ) possible divisions of

n
nXa
XB

the n battlefields into disjoint {n — 2X4 )-subsets and %X4-subsets and
] Xz Xz

nXy
Xp
the m-variate distribution function formed by taking the sum of these

-1
weighting each of these n-variate distribution functions by [(“ >] ,

weighted n-variate distribution functions has univariate marginal distri-
bution functions which each have a mass point of (1 - %) at 0 and

randomize continuously on [0 2x B].

'n

The pivotal steps in this construction are points 2 (b) and 3 (a), and we will now
show that there exist such multivariate distribution functions. Beginning with the
case that % < )—,% < %, from points 2 and 3 player A allocates force to at least
two and not more than three battlefields, which we label battlefields 1, 2, and 3.
Let z; denote the allocation of force to battlefield i € {1,2,3}, z = z3 + z3, and

z; = X4 — z. Consider the support of a bivariate distribution, F', for x5, x3 which

uniformly places mass s_;’-%; — 1 on each of the two following line segments
1. (%XB,XA - %XB) to (XA — %XB,O)
2. (Xa—2Xp,2Xp) to (0, X4 — 2X5p)

and uniformly places the remaining mass, 3 — %BA, on the line segment

(%XB, Xa— %XB) to (XA — %XB, %XB). This support is shown in Figure 1.
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T

X4—2Xp4

n

f t T
2 2
XA—;XB £ Xpg

Figure 1: Support of the Bivariate Distribution F

In the expression for this bivariate distribution function we will use the following

notation.
o RL: {(mg,xg) € [0,2Xp) 22 + 25 > XA}
R2: {(z 0.2X5 % oy > 258754, 4 x, —2X
o R2: {(22,23) € [0, 2 X5] ‘12>§(A—_%Tal1+ A—:Xp

4xp—
e R3: {(CL‘Q,.’L‘g) € [o, %XB]Z |z3 > %Z:‘i’g'm? + Xa - %XB}

‘n

e R4: {(.’EQ,CL‘;;) € [O 2X3]2|$2,173 < Xa- %XB}
o R5: {(IQ,xg,) € [0,2X5]’| (z2, 73) ¢ R1UR2UR3UR4}

The bivariate distribution function for z, z3 is given by

p

(zg,23) € R4

[zﬁﬂfa—%?i;ﬂ“%xlﬁ} ;;(jf{i (z9,23) € R5

F (2, 73) = %%?; (2z9,23) € R2
gﬁ)g.; (z2,23) € R3

| 1 mwem
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The univariate marginal distributions are given by F' (.1:2, %X B) = _T”f(; and
F (%X B,$3) = %%3{; Thus F provides the necessary univariate m;rginal distribu-
tions for battlefields 2 and 3.

If % = %, then player A randomizes on only 2 battlefields and the support
of this bivariate distribution function F' collapses to the line segment (%X B, 0) to
(0, %XB), i.e. the support is {(:cl,:vz) eER2|z; +z2 = XA}.w

If 2 < %g < 2| then, from the support of the bivariate distribution function F,

it follows that

2—(Xa-2X n
G(2) = ( e B)>(T’%‘2) 2 € [Xa— 2Xp,Xa)
1 ZZXA

Since 71 = X4 — 22 — x3, we have that the univariate marginal distribution for
battlefield 1 places an atom of size 3 — %} at 0 and randomizes continuously on
[0, %X B] with the remaining mass, and that for all realizations of (z1,x9,z3) 1 +
Z9+x3 = X4 with probability 1. Equivalently, the combination of z; = X4 — z with
the bivariate distribution F' for x5 and z3 defines a trivariate distribution function,
F’, with support that uniformly places mass %)—;A; — 1 on each of the two following
line segments '

1. (0,%XB,XA - %XB) to (%XB,XA - %XB,O)
2. (0,Xa—2Xp,2Xp) to (2Xp,0, X4 — 2X5p)

and uniformly places the remaining mass, 3 — %;, on the line segment

(0, %XB,XA - %XB) to (O,XA - %XB, 2XB). The projection of this support onto

n

the zq, £3-, T1, T3-, and z1, To-planes is given in Figure 2.

197t should be pointed out that in the case that 2 = %-3, the bivariate distribution function F is

exactly the Fréchet-Hoeffding lower bound 2-copula,
W = max {F (z1) + F (z) — 1,0}

combined with F (z;) = g%~ for 2; € [0, 2Xg] and i=1,2.
nx‘ﬂB n
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I3 o)
2 2
aXB T 2 XB |
t } T2 } t T
Xa—2Xp 2Xp Xa-2Xp 2Xp
Projection of Support onto the Projection of Support onto the
T3, x3-plane z1, x2-plane (or z1, z3-plane)

Figure 2: Support of the Trivariate Distribution F”

If -%;1 = %, then player A randomizes on 3 battlefields according to the trivariate
distribution function F’ which has support that for )?(g = % uniformly places mass

1 on each of the two following line segments

1. (0,2Xp, X4 — 2Xp) to (2Xp, X4 — 2X5,0)
2. (0,Xa~ 2Xp,2Xp) to (2X5,0,X4 — 2X5)

From the preceding discussion it is clear that each of the three univariate marginal
distribution functions randomizes continuously on [O, %X B] and that for all realiza-
tions of (1, x2, x3) T1 + 22 + x3 = X4 with probability 1.

Similarly, for % < —,% < % player A allocates force to at least three and not more
than four battlefields. In this case, let z = z; + 23 + x4 and z; = X4 — z. Consider
the support of the trivariate distribution function, F, for z5, x3, x4 which uniformly

X

places mass 2 — 2—,?; on each of the two following line segments

1. (0,2Xp, Xa— 2Xp) to ((Xp, X4 — 2X5,0)

2. (0, X4~ 2X5,3Xp) to (3X5,0,Xa — 2X5)
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and uniformly places mass ;}B - g— on each of the two following line segments
1. (0,0,X4—2Xp) to (3Xp, X4 — 2X5,0)
2. (0,X4— 2Xp,0) to (2X5,0, X4 — 2X5).

This support is shown in Figure 3.

T3
2
nXB
X4~ ;XB -
z2
2
nXB
Xa—2X
A~ ;B
2
T4 ;XB

Figure 3: Support of the Trivariate Distribution £

Given this support, it is straightforward to establish that each of the three uni-
variate marginal distribution functions randomizes continuously on [0,2Xp]. In
addition, this trivariate distribution function has the property that the distribu-
tion of z places an atom of size 4 — %‘i at X4 and randomizes continuously on
[X A— %X B, X A] with the remaining mass. Since at every point on the support
T1+To+T3+x4 = Xy, it follows directly that the distribution on battlefield 1 places
an atom of size 4 — "—éﬁ at 0 and randomizes continuously on [X 4— %X B, X A] with

the remaining mass.
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Since we can always use independent combinations of the bivariate and trivariate

distributions used to establish that points 2 (b) and 3(a) hold for 2 < %4 < &
n B n

the remaining cases, % < f,g—g < 1, follow directly. For example, in the case that

:%g = % player A can independently use the construction for ‘;—g = % twice. Thus,

player A randomly selects n — 4 battlefields which each receive zero force, breaks the
remaining four battlefields into two sets of two battlefields, and independently uses
the bivariate distribution function,
F(z,y) = max{%—;g+ %yTB —1,0}

for z,y € [O, %X B} on each of the sets of two battlefields. Since these bivariate
distribution functions are independent it is straightforward to show that the support
across all four battlefields is contained in { x € RY| Z;l T, =X A}. In general, for all
i< % < 1 there exist combinations of independent bi- and trivariate distribution

n —

functions to establish that points 2 (b) and 3 (a) hold for 2 < % <L
We now examine the case that 1=

< %‘3 < % as in Theorem 3. This proof
is for player B. The existence of a sufficient n-variate distribution for player A
in this parameter range is a special case of the Theorem 2 parameter range when
X4 = %X 5. The construction of the n-variate distribution function is outlined as

follows.

1. Player B randomly selects L%J — n of the battlefields and provides a force

of X 4 to those battlefields.

2. If [%ﬂ - [QTX}J — 1, then:

(a) Player B randomly selects 2n — [—’—{ﬂ] of the remaining 2n — LmJ bat-

2,
Xa Xa
tlefields.

(b) On the randomly selected 2n — [%Aﬁ-} battlefields, player B randomizes

continuously on {0, X 4] on each of these battlefields such that, letting 2 be
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the sum of player B’s allocations of force on all n — 1 of these battlefields

and G (z) be the distribution of z,

for z € [XB—XA,XB]

(c) Defining the allocation of force on the remaining battlefield as Xp — 2, it
follows directly that the univariate distribution of force on the remaining

battlefield places mass QTXA?— [%J at X 4 and randomizes continuously on

[0, X 4] with the remaining mass. In addition for all realizations, x € R,

of this strategy »_7_; 2/ = X with probability 1.

(d) There are (2”‘{1’?‘5

joint ([%J - n)-subse‘ts, (Zn - l—g-)%(‘—f])-subsets, and 1-subsets. Con-

n—| 238
J> (21 { *4 J ) ways of dividing n battlefields into dis-

structing an m-variate distribution as described above on each of the
2Xp

2n—
(2”_t J) ( 1 =2 J) possible divisions of the n battlefields into dis-

[ M
CE

joint ([Q—X)%J —n)-subsets, (2n— [%D-subsets, and 1-subsets and

weighting each of these mn-variate distribution functions by

on-| B | e .
o, . -4 , the n-variate distribution function formed
|22
by taking the sum of these weighted n-variate distribution functions has
univariate marginal distribution functions which each have a mass point

2
of ﬂ;{—f — 1 at X4 and randomize continuously on [0, X 4].

3.1 [32) - | B2 = 0, then:

(a) On the remaining 2n— 27’(5 battlefields, player B randomizes continuously
on [0, X 4] on each of these battlefields such that, letting z be the sum of
player B’s allocation of force on all of the battlefields and G (2) be the

distribution of z,
0 z< XB
1 2> Xp

G(z) =
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Thus, for all realizations, x € RY, of this strategy Z?:l ' = Xp with
probability 1.

(b) There are (22_%5

> ways of dividing the n battlefields into disjoint

(2,)((—5 - n)-subsets and (2n - %)—subsets. Constructing an n-variate

distribution as described above on each of the (" ) possible divisions

o 28
X4
of the n battlefields into disjoint (275 — n)-subsets and (Qn — %?—)-

subsets and weighting each of these n-variate distribution functions by
[(ZZ_%EH , the n-variate distribution function formed by taking the
sum of these weighted n-variate distribution functions has univariate
marginal distribution functions which each have a mass point of

2
(% - 1) at X4 and randomize continuously on [0, X 4].

The pivotal steps in this construction are, again, points 2 (b) and 3 (a), and we
will now show that there exist such multivariate distribution functions. In fact
these multivariate distributions are quite similar to those used for the Theorem 2
parameter range. We will, thus, only provide the supports of the bivariate and
trivariate distributions that establish that points 2 (b) and 3 (a) hold. Beginning
with the case that n —3 < %AB- —n < n-2, from points 2 and 3 player B allocates a
force of X4 to at least n — 3 and not more than n — 2 battlefields. Given that n — 3
battlefields have received a force of X 4, for the three remaining battlefields let z;
denote the allocation of force to battlefield i € {1,2,3}. Consider the support of a
trivariate distribution function for z1, 2o, 23 which uniformly places mass n —1 — &

XA
on each of the two following line segments

1. (O,XA,XB—XA(TZ—"Q)) to (XA,XB—XA(n—2),O)
2. (OaXB'_XA (n_z)aXA) to (XA,O,XB—XA (n_2))

and uniformly places the remaining mass, %f— — 2n + 3, on the line segment

(X4,0,Xp—Xa(n—=2)) to (Xa,Xp—X4a(n—2),0). Given this support, it is

straightforward to establish that the univariate marginal distribution functions on
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battlefields 2 and 3 randomize continuously on [0, %X B] and that the univariate
marginal distribution function for battlefield 1 places an atom of size —Z%f —2n+3
at X, and randomizes continuously on [0, X 4] with the remaining mass.

Similarly, for n —4 < %? —n < n -3 player B allocates a force of X 4 to at least
n—4 and not more than n—3 battlefields. Given that n—4 battlefields have received
a force of X4, for the four remaining battlefields let z; denote the allocation of force
to battlefield i € {1,2,3,4}, 2’ = vo+23+xsand 21 = Xg—2'— X4 (n — 4). Consider
the support of a trivariate distribution function for xs, x3, £4 which uniformly places

mass 2 + %%ﬁ- — n on each of the two following line segments
1. (O,XA,XB—XA(TI—2)) to (XA,XB—XA(TL—2),O)
2. (O,XB—XA(TL'—2),XA) to (XA,O,XB—XA(TI—Q))

and uniformly places mass n — X2 — 3

X2 —5on each of the two following line segments

1. (O,XA,XB—XA(TL—Z)) to (XA,XB—XA(TL—Q),XA)
2. (O,XB—XA(TL—Z),X’A) to (XA,XA,XB—-XA(’R—Z))

Given this support, it is straightforward to establish that each of the three univari-
ate marginal distribution functions randomizes continuously on [0, X 4]. In addition,
this trivariate distribution function has the property that the distribution of 2’ places
an atom of size 4 + % —2n on X — X4 (n — 3) and randomizes continuously on
[Xp — Xa(n—3),Xp— Xa(n—4)] with the remaining mass. Since at every point
on the support 1 + 22 + x3 + 4 = X4, it follows directly that the distribution on
battlefield 1 places an atom of size 4 + 2%“3 —2n at X 4 and randomizes continuously
on [0, X 4] with the remaining mass.

Since we can always use independent combinations of the bivariate and trivariate

distributions used to establish that points 2 (b) and 3 (a) hold for n —4 < %f —n <

n — 2, the remaining cases, 0 < %f —n < n — 4, follow directly.
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1.4 Conclusion

I conclude by noting the relationship between Borel’s form of the Colonel Blotto
game and Myerson’s form of the Colonel Blotto game. Myerson (1993) presents a
modified form of the Colonel Blotto game in which there are an infinite number of
battlefields and the budget holds only in expectation (see Judd (1985) and Feldman
and Gilles (1985) for a discussion of the application of the law of large numbers on a
continuum). In recent years, this model has attracted interest, including redistribu-
tive politics applications such as: the incentives for generating budget deficits (Lizzeri
(2002)), inefficiency of public good provision (Lizzeri and Persico (2001,2002)), and
campaign spending regulation (Sahuguet and Persico (2004)). Myerson's justifica-

tion for this simplified formulation is that:

The hardest part of [the Colonel Blotto] problem was to construct
joint distributions for allocations that always sum to the given total but
give uniform marginal distributions for each battlefield/voter. I have
avoided such difficulties here by allowing the offers to be made inde-
pendently to the various voters and by only requiring that the budget

constraint be satisfied in expected value. (p.858)

This paper demonstrates that the problem of constructing optimal joint distri-
butions for Borel’s form of the Colonel Blotto game can be separated into charac-
terizing the set of univariate marginal distributions and establishing the existence
of a mapping of this set into a joint distribution. In addition, this separation of
the joint distribution into a set of univariate marginal distributions and an n-copula
also highlights the connection between Borel’s form of the Colonel Blotto game and
Myerson’s form of the Colonel Blotto game. In particular, for the players’ levels of
force specified in Theorems 2 and 3, in Borel’s form of the Colonel Blotto game each
player allocates all of their force with probability 1 and thus must allocate all of

their force in expectation. It follows directly that the equilibrium distributions of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

Myerson’s form of the Colonel Blotto game correspond exactly with the equilibrium

univariate marginal distributions in Borel’s form of the Colonel Blotto game.
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1.6 Appendix

The proof of Theorem 2, which is contained in the following lemmas, establishes
that there exists a one-to-one correspondence between the equilibrium univariate
marginal distributions of the Colonel Blotto game and the equilibrium distributions
of bids from a unique set of two-bidder independent and identical simultaneous all-
pay auctions. The uniqueness of the equilibrium univariate marginal distributions
then follows from the characterization of the all-pay auction by Hillman and Riley

(1989) and Baye, Kovenock and de Vries (1996). In the discussion that follows,

§Z and §f are the upper and lower bounds of candidate 's distribution of force for

battlefield j and 2 < %A < 1.
. XB
Lemma 1: For each i € {4, B}, A; > 0.
Proof: For Theorem 2’s parameter range, in any equilibrium each player

allocates all of their forces with probability 1. Thus, each player must also

allocate all of their forces in expectation. Q.E.D.

These next four lemmas follow along the lines of the proofs in Baye, Kovenock,

and de Vries (1996).
Lemma 2: For each j € {1,...,n}, &,

Lemma 3: In any equilibrium {Ff F? i}j

in the half open interval (0, 57].

Lemma 4: For each j € {1,...,n} and for each ¢ € {4, B}, nL/\ini (z)—z

is constant V z € (0, &).

Lemma 5: V j € {1,...,n}, F}(0) = 0 and, thus, ——F} (z) ~2 =0V

'I'I./\A

z € [0,5).
The following lemma characterizes the relationship between A4 and Ap.

Lemma 6: In equilibrium Ay = )\B%.
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Proof: By way of contradiction, suppose that Asq # )\B%. For Theorem
2’s parameter range, in any equilibrium each player allocates all of their

forces with certainty and in expectation, thus

n 37 n 3/ )
XBZ; /0 zdFY (z) = Xa ) /0 zdF}, () (1.3)
= =1

But, from lemmas 3, 4, and 5, it follows that

dF} (z) = npdzx (1.4)
for all z € (0,5], and

dF} (z) = nhade (1.5)

for all z € [0, 57]. Substituting equations 4 and 5 into equation 3, we have

n 37 n 57
AsXp S / nade =\Xa Y., [ nada
j=1 =1

which is a contradiction since

n & n 5/
E / nedr = E / nxdx
=170 j=170

but Ag # ,\Bf,g—i. Q.E.D.
The following lemma establishes the value of 3.

o5 = 1
Lemma 7: 37 = YR

Proof: From lemmas 4 and 5, we know that for each player ¢ and any

battlefield j
1

n/\i

Fl (z)—=x

is constant ¥ = € (0,87]. It then follows that player i would never use
a strategy that provides offers in <n+\,’ oo) since an offer of zero strictly
dominates such a strategy. Noting that ﬁ < ;{—B;, we have that & < ——
and that V z € (0, 5]

1
’I’L/\,;

Fj- > _—J"
7, (x) l_n/\i 3
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By way of contradiction, assume that 5 < - then by allocating a level of
force to battlefield j that is greater than 3’ by an arbitrarily small amount,
player A can earn arbitrarily close to ;}\—; — & > 0 on battlefield j, which

contradicts lemma 5. Q.E.D.

The following lemma establishes that there exists a unique pair A4, Ap that

satisfies the budget constraint.

Lemma 8: There exists a unique value for A4, and thus for Ag. Ay = ﬁg
and thus A\g = 2—%&-

“*B
Proof: The budget constraint determines the unique pair A4, Ag. Thus,
A4 solves

oy
n / zniasdr = Xp
0

Solving for A4 we have that

1

Ay = ——.
A7 99X,

It follows directly from lemma 6 that A\g = %5‘-:2;. Q.E.D.

This completes the proof of Theorem 2.
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2. Fiscal Federalisimn and the Incentives of Redistributive

Politics

In the model of redistributive politics, political parties compete for representation in
a legislature by simultaneously announcing binding commitments as to how they will
allocate a budget across voters. Each voter votes for the party offering the highest
level of utility, and each party’s payoff is its representation in the legislature, which
under proportional representation is equal to the fraction of votes received by that
party. This model was originally formulated with a continuum of voters by Myerson
(1993) and later with a finite population of voters by Laslier and Picard (2002).!
This paper extends Laslier and Picard’s (2002) model of redistributive politics
with a finite population of voters to allow for centralized and decentralized redis-
tributive competition with local public goods and shows that this has important
implications for both fiscal federalism and redistributive politics. In the centralized
system, political parties compete for representation in the legislature by announcing
binding commitments as to how they will allocate the aggregate budget to redistribu-
tion across the voters and to investment in the production of the local public goods
in each of the jurisdictions. In the decentralized system, parties compete within each
jurisdiction by announcing binding commitments as to how they will allocate that
jurisdiction’s budget to redistribution across the voters in that jurisdiction and to

investment in the production of the local public good in that jurisdiction. In both

1In both of these games there are no pure strategy equilibrium. In Myerson (1993) an offer dis-
tribution is a probability distribution over R4 with the measure over each interval interpreted as
the fraction of voters for whom the party’s transfer has value in that interval. Since Myerson
assumes a continuum of voters and offers that are independent across voters (each voter takes an
independent draw from the offer distribution), one can appeal to Judd (1985) and Feldman and
Gilles (1985) in assuming that the aggregate budget constraint holds with probability one and not
just in expectation. In Laslier and Picard (2002) an offer distribution is an n-variate distribution
over R} with the property that the budget constraint holds with probability one.
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systems, voters vote (sincerely) for the party that offers them the higher level of
utility from both the transfer offered and the level of local public good provision.

In Laslier and Picard (2002), which follows from Borel’s (1921) Colonel Blotto
game, there are no pure strategy equilibrium. A mixed strategy is joint distribution
function with one univariate marginal distribution for each voter, which represents
the randomization of and the correlation between the transfers targeted at each voter.
Similarly, there are no pure strategy equilibrium in the centralized and decentralized
models of redistributive politics with local public goods. In both models, a mixed
strategy is a joint distribution function with one dimension for each voter and one
dimension for each jurisdiction, which represents the randomization and correlation
of both the transfers targeted at each voter and the zero-one local public good pro-
vision decision for each jurisdiction. This paper demonstrates how to separate each
party’s best response correspondence into a set of univariate marginal distributions
and a mapping from this set into a joint distribution.? I then completely character-
ize each parties’ unique set of Nash equilibrium univariate marginal distributions for
the centralized and decentralized models of redistributive politics with local public
goods.?

In equilibrium, the level of inequality (as measured by the Gini-coefficient) arising
from each party’s redistributive/local public goods schedule is higher in a centralized
system than in a decentralized system. In a centralized system the level of inequality
arising in each party’s redistributive/local public goods schedule is increasing in the
utilities provided by the local public goods. Conversely, in a decentralized system,
the level of inequality arising in each party’s redistributive/local public goods sched-
ule is decreasing in the utilities provided by the local public goods. In addition, if

the utilities provided by the local public goods are above a minimal threshold, then

2See Nelson (1999) for an introduction to copulas, the mappings from univariate marginal distri-
butions into joint distributions.

3While each player’s set of equilibrium univariate marginal distributions of this game is unique,
there are several distinct mappings (and thus several distinct joint distributions) of these sets of
univariate marginal distributions into joint distributions with the property that the entire budget
is spent with probability one.
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centralization is also found to create greater inefficiencies in the provision of the local
public good. However, the greater inefficiency of centralization is due to the incen-
tives of redistributive competition with centralization and not to interjurisdictional
externalities or heterogeneities in the production of or preferences for local public
goods. In particular, centralization facilitates revenue sharing across jurisdictions.
It is the combination of revenue sharing across jurisdictions and the targetablity
of local public goods that lead to greater inefficiencies and greater inequality in a
centralized system.

While closely related to the traditional theory of fiscal federalism (i.e. Musgrave
(1959) and Oates (1972)), this paper departs from that theory in several important
ways. First, this paper assumes that in a centralized system each party has the
ability to choose the level of local public good provision for each of the jurisdictions
rather than only a uniform level of local public good provision across all jurisdictions.
Clearly, there are both theoretical and empirical justifications* for generalizing the
local public good provision options in a model of a centralized system. Second, as is
common in models of redistributive politics, the electorate is assumed to be homo-
geneous in both preferences for their local public good and in original endowment.
In a centralized system, one possible goal of revenue sharing across jurisdictions is
fiscal equalization, i.e. transfers from wealthy jurisdictions to poor jurisdictions. By
assuming a homogeneous electorate, this paper highlights the strategic aspects of
redistributive competition and the resulting inequality. Third, this paper assumes
that there are no interjurisdictional externalities and no cost differentials in the pro-
duction of the local public goods®. In this setting, the traditional theory of fiscal
federalism provides no prescription for a centralized versus a decentralized system

since the welfare under both systems is the same. In contrast, this paper highlights

4See for example Besley and Coate (2003) and Lockwood (2002), among others, who discuss this
issue.

5In particular, in this paper the provision of the local public good has the same cost per voter in
each jurisdiction.
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important differences between the centralized and decentralized systems when the
incentives of redistributive competition are taken into account.

Closely related is Lizzeri and Perisco’s (2001) model of redistributive competition
(over a continuum of voters) with public good provision. In that paper political par-
ties compete for representation in a legislature by announcing binding commitments
as to how they will allocate a budget across voters and investment in the production
of a public good. As in this paper, the electorate is homogeneous in both their pref-
erences for the public good and in original endowment, and each voter votes for the
party offering the highest level of utility (from both redistribution and public good
provision). That paper finds that in an electoral college system with winner-take-all
in each jurisdiction and a continuum of jurisdictions each with a continuum of voters,
the inefficiency of public good provision is much greater than in proportional system.

This paper generalizes Lizzeri and Perisco’s (2001) public good production tech-
nology by allowing for local public good provision within each jurisdiction. It is this
generalization that facilitates the comparison of centralized and decentralized redis-
tributive competition with local public goods. In addition, in that paper there are
a continuum of voters and the budget holds in expectation. This paper focuses on
the case of a finite number of jurisdictions each with a finite number of voters and
develops the necessary correlation structure to ensure that the budget holds with
probability one. Lastly, Lizzeri and Persico (2001) focus solely on the inefficiency
of public good provision. This paper also examines the inequality that results from
centralized and decentralized redistributive competition with local public goods.

Section 2 presents the centralized and decentralized models of redistributive pol-
itics with local public good provision. Section 3 demonstrates how to separate the
parties’ best response correspondences into a set of univariate marginal distributions
and a mapping from this set into a joint distribution; completely characterizes the
unique set of Nash equilibrium univariate marginal distributions of the games of
centralized and decentralized redistributive politics with local public goods; demon-

strates the existence of a mapping from the set of equilibrium univariate marginal
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distributions into a joint distribution with the property that the budget is satisfied
with probability one; and explores the nature of the inequality and inefficiency in

the centralized and decentralized systems. Section 4 concludes.

2.1 The Model
Voters

The electorate consists of a finite number n of voters, which are denoted by 2 €
{1,...,n}. Voters are partitioned among a finite number % of disjoint jurisdictions,
where jurisdiction j € {1,...,k} consists of a finite number n; > 3 of voters such
that E?ﬂ n; = n. Voters are distinguished by the jurisdiction to which they belong,
where voter z in jurisdiction j is denoted by z(j). Each voter is endowed with 1
unit of a private homogeneous good.

In jurisdiction j the local public good provides a benefit of G; to each of the voters
in jurisdiction j. In each jurisdiction, j, the production of the local public good is
a zero-one decision which is indicated by L{ € {0,1} for party i. The production of
the local public good in jurisdiction j requires all of district j’s endowment, i.e. n;
units of the homogeneous good.® Throughout this paper we will focus on the case
that production of the local public goods is efficient, i.e. G; > 1.7 Each voter in
each jurisdiction receives an offer of a tax or transfer from each party. For voter z in
jurisdiction 7, let tf(j ) e R, denote that voter’s amount of the private homogeneous
good after party #’s commitment of any taxes or transfers. Voters’ utilities are
additively separable in the private homogeneous good and the local public good.

Thus, the utility that voter z in district 7 receives from party ¢ who offers them

<L{, tf(j)> is

8As in Lizzeri and Persico (1998), this analysis is robust to the relaxation of this assumption.

7In the case that production of the local public goods is inefficient, the local public goods are
not produced in any optimal strategy of the games of centralized and decentralized redistributive
politics with local public goods, and the equilibrium becomes that of the model of redistributive
politics without local public goods.

u (i), = 29 1 da,.
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Each voter votes for the party that provides them with the higher level of utility. In
the case that the parties provide the same level of utility to a voter, the parties win

the voter with equal probability.

2.1.1 Centralized Political Competition

Parties

Two parties, A and B, make simultaneous offers of transfers to each of the n voters
and production commitments to the local public good for each of the & jurisdic-
tions. Each party’s payoff is its vote share. The maximum tax that can be imposed
upon a voter is equal to one unit of the private homogeneous good. Thus, each
voter’s allocation of the private homogeneous good, after any taxes or transfers, is

nonnegative.
Centralized Strategies

As in both the model of pure redistributive politics and the Colonel Blotto game,
there are no pure strategy equilibrium in either the centralized or decentralized re-
distributive politics with local public goods games. A mixed strategy for the game of
centralized redistributive politics with local public goods, which we label a centralized
redistributive /local public goods schedule, for party i is an n + k-variate distribution
function P; : {0,1}* JR® — [0,1]. The n + k-tuple of the allocations of the private
homogeneous good that result from party i’s taxes/transfers to each of the n voters
and production decisions for each of the k local public goods is a random n + k-tuple
drawn from P; with the set of univariate marginal distributions {{Lf };;1 AFFY }
Since the production decision for each local public good is a zero-one decision, the &
univariate marginal distribution functions, {Lf };c:l, one univariate marginal distri-
bution function for each district j, are each Bernoulli distributions. The probability
that party ¢ provides the local public good in district j, EL{ (z), is denoted by af.

The remaining n univariate marginal distribution functions, { F7},_,, one univariate
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marginal distribution function for each voter z, are the univariate marginal distri-
butions of the allocations that result from party i’s taxes/transfers to each voter
z.

Each party’s centralized redistributive/local public goods schedule must satisfy
the aggregate budget constraint. The set of budget balancing centralized redistribu-
tive/local public good schedules is denoted by,

% — {{{Lj}le,{t:}:¥l}libjnj + it*’ < n}.

The support of any feasible centralized redistributive/local public goods schedule is

contained in B.
Centralized Redistributive Politics with Local Public Goods

The game of centralized redistributive politics with local public goods, which we label

C {{ij"j}f.—_l} )

is the one-shot game in which parties compete by simultaneously announcing budget
balancing centralized redistributive/local public goods schedules, each voter votes for

the party that provides the higher utility, and candidates maximize their vote share.

2.1.2 Decentralized Political Competition
Parties

In each jurisdiction j, two parties, A and B, make simultaneous offers of either re-
distributive transfers to each of the voters in district j or provide the local public
good in district j. Each party’s payoff is its vote share. In the case that redistribu-
tive transfers are offered, the maximum tax that can be imposed on a voter is one
unit of the private homogeneous good. Thus each voter’s allocation of the private

homogeneous good, after any taxes or transfers, is nonnegative.
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Decentralized Strategies

A mixed strategy for the game of decentralized redistributive politics with local
public goods in district 7, which we label a decentralized redistributive/local public
goods schedule in district j, for party ¢ is an n; + 1-variate distribution function,
H; : {0,1} URY — [0,1]. Let N; denote the set of voters in jurisdiction j. The
n; + 1-tuple of the allocations of the private homogeneous good that result from
party i’s taxes/transfers to each of the n; voters in jurisdiction j and the production
decision for the local public good in jurisdiction j is a random n; + 1-tuple drawn
from H; with the set of univariate marginal distributions {{Lz} AFF} e Nj}. Since
the production decision for the local public good is a zero-one decision, the single
univariate marginal distribution function, {L;} is a Bernoulli distribution. The prob-
ability that party ¢ provides the local public good, Ef, (z), is denoted by «;. The
remaining n; univariate marginal distribution functions, {Fy},cy, , one univariate
marginal distribution function for each voter in jurisdiction j, are the univariate
marginal distributions of the allocations that result from party ¢’s taxes/transfers to
each voter z.

Each party’s decentralized redistributive/local public goods schedule must sat-
isfy the jurisdiction’s budget constraint. The set of budget balancing decentralized

redistributive/local public good schedules is denoted by,

By = {0} Fhew, flons + Y ¢ <y

ZENJ‘

For each jurisdiction j, the support of any feasible decentralized redistributive/local
public goods schedule is contained in B;. One important distinction between the
centralization and decentralization is that with decentralization the jurisdictional
budget constraint requires that conditional on the decision to produce the local

public good each voter in the district is taxed their entire endowment. That is for

each j€{l,...,k}andforallze N; Ff (Ojs; =1)=1i=A,B.
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Decentralized Redistributive Politics with Local Public Goods

The game of decentralized redistributive politics with local public goods for district j,

which we label
D; {Gj,n;},
is the one-shot game in which parties compete by simultaneously announcing budget

balancing decentralized redistributive/local public goods schedules, each voter votes

for the party that provides the higher utility, and parties maximize their vote share.

2.2 Results
2.2.1 Optimal Univariate Marginal Distributions

To completely characterize the equilibrium univariate marginal distribution func-
tions, we utilize n-copulas, the functions that map univariate marginal distributions

into joint distributions.

Definition: Let I denote the unit interval [0, 1]. An n-copula is a function

C from I™ to I such that

1. For all x € I", C (x) = 0 if at least one coordinate of x is 0, and if all

coordinates of x are 1 except z, then C (x) = .
2. For every x, y € I™ such that z; < y, for all k € {1,...,n}, the

C-volume of the n-box [z1,¥1] X ... X [Zn, Yn),

Ve (x,y]) = Al A1 AR AVC(t)

Tn-1

where
AgtC (t) =C (tl, oy be—1y Yk B, - - ,tn)

—C (t1, s the1, Thy thtls - - s tn)

is greater than or equal to 0.

Given the definition of an n-copula, we can state the crucial property of n-copulas

that we will use.
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Theorem 1 [Sklar’s Theorem in n-dimensions]: Let H be an n-

variate distribution function with univariate marginal distribution func-

tions Fy, Fy,..., F,. Then there exists an n-copula C such that for all
x € R”,

H(zy,...,zn) =C(Fi(21),...,F(zn)) (2.1)
Conversely, if C is an n-copula and Fi, Fs,..., F, are univariate distri-

bution functions, then the function H defined by equation 1 is an n-
variate distribution function with univariate marginal distribution func-

tions Iy, Fy, ..., F,.

The proof of the two-dimensional version of Sklar’s theorem is due to Sklar (1959).
For a proof of the n-dimensional version see Schweizer and Sklar (1983).
One additional definition that will be used throughout the paper is the support

of an n-variate distribution function.

Definition: The support of an n-variate distribution function, H, is the

complement of the union of all open sets of R™ with H-volume zero.

Equilibrium in Centralized System

We now show that the in the game of centralized redistributive politics with local
public goods the univariate marginal distribution functions and the n -+ k-copula are

separate components of the parties’ best response correspondences.

Proposition 1: In C {{Gj, ”j}§=1} each party’s best response correspon-
dence can be separated into the univariate marginal distribution functions
and n + k-copula components.

Proof: In the game C {{Gj, nj}?ﬂ}, for a given P_; each party maxi-
mizes its expected vote share. There are two cases to consider. The first
is that the upper bound of the support, 5, of each univariate marginal

distribution function, F7, is less than or equal to G, i.e. § < G; V z and
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i. The second is that the upper bound of the support, 57, of one or more
of the univariate marginal distribution functions, F7, is more than G;, i.e.
5] > G, for at least one z and i. The proof for each of the these cases
follows similar lines, and given that Lemma 1 in the appendix establishes
that in any optimal strategy 57 < G; V z and ¢, we will focus on the first
case. Thus we have that party i’s optimization problem can be written as
maxp, 1 Z; 17 (1 — aii) Oég‘*-
1 ZJ . ( i o . 20(%04) ZENJ’ fooo F_zgj) (z) dFiz(j)

subject to the constraint that the support of P, is contained in B or equiv-
alently the P;-volume over the region

{Lj,{tzm}zeN} |Z Iy + 3 #9D | >

ZEN;
is 0.
In any optimal strategy Prp, [E;” . (b ns+ D sen, tz(3)> ] = 1 since
each party i's centralized redistributive/local public goods schedule must
have support in 9, and each party will allocate all of the budget. Thus,
the P;-volume over the region
. v
{LJ GAN J} | S lvn+ > ¢ <n

j=1 zeN;

is 0 and

k vn; + 9 =n.
2|t

j=1 zEN;
Noting that

Ep, (Z] 1 (L n; + Z tz(J)))
E?=1 (”J‘EL{ (v]) + 2cen, B FO ( Z(J)>)

and E;; (y]) = of, we have that

zk: odn; + Z E 2 ( z(’)) =n (2.2)

_7:1 ’GN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37



38

That is if the budget holds with certainty, it must also hold in expectation.
Then from Theorem 1 the n+ k-variate distribution P; is equivalent to the
k
set {Lf , {Ff(] )} . } combined with an appropriate n + k-copula, C.
ZEN; =1

Thus, from equation 2 and the fact that the P;-volume over the regions

, . LA .
{L]’{tZ(J)}ZEN'}- |Z Un; + thm >n
7=t 5 2€N;
and
. . kX , ‘
{L], {tZ(])}zeN-}- ‘ Z LJTLJ' + Z tZ(]) <n
7ra=l N 2EN;

is 0, the Lagrangian of party ¢’s optimization problem can be written as

max ) }k i E;?:l n; (1—al,—\)al+
i) i
j=1

zGNj

J

k 1- j_i_ {+2 j—i i ] .
%Z]_ﬂ ZzeNj [)\i fooo [_ﬁ_"/‘\z___"‘_ﬁ_ fgf) (z) — r} dFiz(J)] + X

where the set of univariate marginal distribution functions
k
I { F_zm}
v ¢ ZEN; j=1
satisfy the constraint that there exists a n + k-copula, C, such that the

support of the n + k-variate distribution

o)., )

k
\Z dnj+ th(j) =n

j=1 ZEN;

is contained in

{Lj’ {tZ(]) }zENj }

k

j=1
The proof of the second case follows directly. Q.E.D.

Note that from Theorem 1 an n-variate distribution is equivalent to a set of univariate
marginal distribution functions, {F i}?zl, and an n-copula, C. This in combination

with the payoff function of this class of games allows us to separate the parties’ best
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response correspondences into the univariate marginal distribution and n + k-copula
components.

The following Theorem completely characterizes the set of equilibrium univariate
marginal distributions for the game of centralized redistributive politics with local
public goods. Section 3.2 establishes the existence of an n+k-variate copula with the
necessary property that the combination of the n+k-copula and the set of equilibrium

univariate marginal distributions allocate the aggregate budget with probability one.

Theorem 2: The unique Nash equilibrium univariate marginal distri-
butions of the game C {{Gj,nj};':l} are for each party to produce the
local public goods and offer transfers according to the following univariate

distribution functions. For each party ¢ and jurisdiction j

Vz€N; Ff(j) (z)==z z €[0,1]
1
. = y=0
=1 "
1 y=1

The expected payoff for each party is % of the vote share.

Proof: We begin by showing that this is an equilibrium. First, in any
optimal strategy the budget holds with certainty and thus in expectation.
Assuming that there exists a sufficient n + k-copula (which is established

in section 3.2), this is a feasible strategy since:

k

Z OégTLj + Z EF:(j) (I:(j)> =n

j=1 2E€N;

Then given that party B is following the equilibrium strategy, it is never a
best response for party A to provide transfers outside the support of party

B’s transfers. Thus we have that the payoff to party A when it chooses to

k
provide transfers according to an arbitrary strategy {Gf, {Ff(] )} N }
zelNj j=1
is:

k j k 1 )
515 Ej:l njo] + 51,7 Zj:l ZzeNj fo xdFiZ(J
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But from equation (2) of Proposition 1 it follows that
izk:n‘o/:vL—l—zk: Z /1:L'dF.z(j) <1
2n 7T on = 5 Jo T2
which holds with equality if and only if party A uses a strategy that spends
the entire budget in expectation, as does the equilibrium strategy. Thus
party A’s vote share cannot be increased by deviating to another strategy.
The argument for party B is symmetric.

The proof of uniqueness is contained in the appendix. Q.E.D.

This result holds regardless of the benefit of the local public good in each district.

Equilibrium in a Decentralized System

A similar result applies to the game of decentralized redistributive politics with

local public goods.

Proposition 2: In D; {G;,n;} each party’s best response correspondence
can be separated into the univariate marginal distribution functions and
n; + l-copula components.

Proof: In the game D; {G;,n;}, for a given H_; each party maximizes its
expected vote share in jurisdiction 7. Thus, in jurisdiction j the optimiza-

tion problem for party i can be written as

maxg, 1—111— (I—ai)ami 2 ey, (1= F7 (Gl =0)) +
w (o) (=) Yoen, Jo- FZi(alti = 0)dF (z|u = 0) +
w (=)0 X ey, FZ (Gylems = 0) + 252
subject to the constraint that the support of H; is contained in B; or

equivalently the H;-volume over the region

{1 eew, f long + D 8 >y

ZENj

is 0.
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In any optimal strategy Pry,|..—o [Zze N 7= n]-] = 1 since each party
i’s decentralized redistributive/local public good provision schedule must
have support in 9B;, and each party will allocate all of jurisdiction j’s

budget. Thus, the H;-volume over the region

{0 (e, p i + 3 8 <y

ZEN]'
is 0 and
EHi|Li=O Z ¥l = nj.
ZENj
That is if the budget holds with certainty it must hold in expectation.
Noting that

Enju=0 Z ] = Z Erz =0 (27)

zENj zENj
we have that
> Erumo (2) =1y (2.3)
ZENJ‘

From Theorem 1 the n; + 1-variate distribution H; is equivalent to the set
{{Li} AF? e NJ} combined with an appropriate n; 4 1-copula, C. Thus,
the Lagrangian of party i’s optimization problem can be written as
1
L,-,{Ff} } E(l—al) a—iZzEN]« (l—Fzz (GJ|L1 =O))+
ZENJ-
5o 7 (U2l i (ofu = 0) — ) dFF () = 0) +
n(L—a) o Fey, FZ (Gilemi = 0) + 5= + A
where the set of univariate marginal distribution functions

(L} AP hen, }

satisfy the constraint that there exists a n; + 1-copula, C, such that the

max {

support of the n; + 1-variate distribution C (Li, {F} e Nj) is contained in

{10 8 e, Jlins + 3 5 =y

zENj
Q.E.D.
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Given the fact that if the budget must hold with certainty then it must hold in
expectation, it follows directly that the set of Nash equilibrium univariate marginal
distributions of the game of decentralized redistributive politics with local public
goods coincide exactly with the equilibrium of Lizzeri and Persico’s (2001) model of
redistributive politics with public good provision. Thus for the game of decentralized

redistributive politics with local public goods we have the following.

Theorem 3: (Lizzeri and Persico (2001)) The unique Nash equilib-
rium univariate marginal distribution functions of the game D; {G;,n;}
are for each party to produce the local public goods and offer transfers
according to the following univariate distribution functions. If 1 < G; < 2

in district j, then for party @

2-G; y=0
Li(y) = 1] ]
y:
and V z € N;
. %(2_m%) 0<z<2-Gj
1
FPO (305 = 0) = 4 T 2-G;<x<G;j
L(1+5£%)  Gi<a<?
{ 1 x>2

If G; > 2 then both parties provide the local public good certainty. In

both cases, the expected payoff for each party is % of the vote share.

Given Proposition 2, the proof of existence and uniqueness of this equilibrium is
a straightforward extension of Lizzeri and Persico’s (2001) result for a continuum of

voters and is thus omitted.

2.2.2 Existence of Sufficient n-copulas

Subject to the constraint that there exist sufficient n-copulas, Theorems 2 and
3 characterize the unique sets of the games of centralized and decentralized redis-

tributive politics with local public goods. There are no known existence results for
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n+k-copulas or n;+1-copulas with our necessary properties. However from Theorem
1, it is sufficient to show that there exists at least one n + k-variate distribution and
one n; + 1l-variate distribution with the necessary properties. To avoid non-generic
cases which complicate the statement of the proofs and results, we will focus on
the case in which n, k, and, for all j € {1,...,k}, n; are even. In addition, it will
be assumed that each jurisdiction has the same number of voters, i.e. nj =n_; V

j,—j€{1,... k}2

Centralized System

Since n > 8,° there are several graphical solutions for generating n-variate distri-
butions over the set 9.19 In the discussion that follows, we will focus on the classic
‘disk’ solution due to Borel (Borel and Ville (1938)) and the generalized ‘disk’ solu-
tion, due to Gross and Wagner (1950).

Since we have assumed that & is even and all jurisdictions are of the same size, we
can simplify the construction of a sufficient n + k-copula by separately constructing
an n-copula and a k-copula which are independent. We begin with the n-variate
marginal distribution function of P; with the set of univariate marginal distribution
functions {F?},_,. Consider a regular n-gon with sides, z € {1,...,n}, of length
tan (%) Let € be the center of this regular n-gon. The diameter of the circle
inscribed in this n-gon with center 0 is 1.1! Let S be the hemisphere of diameter 1
centered at . Let M be a point randomly chosen from the surface of S, according
to the uniform distribution on the surface of S. Let M’ be the projection of M on
the plane that contains the n-gon. Finally, let ¢* be the distance from M’ to the side

z of the n-gon.

8The main results of this paper hold for all feasible partitions of the electorate, but the construction
of sufficient n-copulas is remarkably more cumbersome in the case that the jurisdictions are of
different sizes.

9 >8sincek >2and n; >4 forje{1,...,k}

108ee Gross and Wagner (1950).

U For a review of the properties of regular n-gons see Harris and Stocker (1998).
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For the k-variate marginal distribution function of P; with the set of univariate
marginal distribution functions {Lf }:=1, partition the jurisdictions into two groups
of equal size and randomly choose one of the groups for which the local public good
is provided in every jurisdiction. Since n; = n_; for all j and k is even it follows

directly that such a partition exists. Given this we have the following.

Proposition 3: Let P’ denote the n+ k-variate distribution function over
. . k ) ) )

{{L], {t”(f)}zeNj }j=1 \ Z§=1 (L]TLJ' + EZGNJ, tzm) = n} induced by the con-

struction outlined above. Then, P generates the equilibrium univariate

marginal distributions in Theorem 2 and a sufficient n + k-copula.

The construction of the n-variate distribution function for the randomization of the
transfers is the standard construction of the ‘disk’ solution (for a proof see Laslier
(2002), Laslier and Picard (2002), or Gross and Wagner (1950)). The independent
combination of this n-variate distribution with the construction of the k-variate
distribution given above defines an n + k-variate distribution function with support
on the set {{Lj, {tZ(j)}zeNj}:zl ] Z;‘?:l (Ljnj + 2 cen, tz(j)) = n} that generates the
equilibrium marginal distributions in Theorem 2. Thus a sufficient n + k-copula

exists.

Decentralized System

Since n; > 4 and even, we can use the ‘disk’ solution to generate the candi-
dates’ distributions of redistributive transfers. For the n;-variate marginal distribu-
tion of H; conditional on ¢; = 0 with the set of univariate marginal distributions
{FZ|; = O}zeNj, consider a regular nj-gon with sides, z € {1,...,n;}, of length
(2—Gj)tan (Z). Let Q be the center of this regular nj-gon. The diameter of the
circle inscribed in this n-gon with center Q is 2 — G;. Let S be the hemisphere of
diameter 2 — G; centered at 2. Let M be a point randomly chosen from the sur-
face of S, according to the uniform distribution on the surface of S. Let M’ be the

projection of M on the plane that contains the n-gon. Finally, let ¢* be the distance
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from M’ to the side z of the n-gon. Then randomly assign an additional transfer of
G; to half of the voters in district j.

Combining this construction for the distribution of transfers conditional on not
providing the local public good with the equilibrium probability of providing the

local public good we have the following,.

Proposition 4: Let H; denote the n; + l-variate distribution func-

tion over {{L, {tz(j)}zeN} |5+ 3w, 79 = nj} induced by the con-
M

struction outlined above. Then, H; generates the equilibrium univariate

marginal distributions in Theorem 3 and a sufficient n; + 1-copula.

The construction of H is a straightforward extension of the standard construction
of the ‘disk’ solution (for a proof see Laslier (2002), Laslier and Picard (2002), or
Gross and Wagner (1950)).

2.2.3 Centralization vs. Decentralization

We now apply the equilibrium characterizations of the centralized and decentral-
ized systems to compare the inequality and inefficiency that arise in each. Corollary
1 examines the equilibrium level of inequality arising in the centralized system and
corollary 2 examines the equilibrium level of inequality arising in the decentralized
system. In the centralized system, the Lorenz curves for the parties’ centralized
redistributive/local public goods schedules are piecewise quadratic functions that
depend critically on the utilities provided by each of the local public goods. To sim-
plify this analysis, we will focus on the case that the utilities provided by the local

public goods are the same for each jurisdiction, ie. Gj=GV je€ {1,...,k}.

Corollary 1: For each party i = A, B, the inequality (as measured by the
Gini-coeflicient of inequality) arising from party #’s equilibrium central-
ized redistributive/local public goods schedule is increasing in the utility
provided by the local public good, G, for all efficient levels of the utility
provided by the local public good. More precisely, the Gini-coefficient of
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party i's equilibrium centralized redistributive/local public goods schedule

5
61+G)

o (00 G
Proof: From Theorem 2 and proposition 3, the proportion of voters who
receive a utility level from party ¢’s equilibrium centralized redistribu-

tive/local public goods schedule that is less than or equal to z is

z €[0,1)
z€[l,G)
1+2C z¢[G,G+1]

(SISt

By definition the Lorenz curve for F) is

Y Fol(z)da
Li(y) = 4@y e j0,1],

Jo o ()da

which is equivalent to

2y° 1
W=\ peet-Daedf
e ve ]

By definition, the Gini-coefficient for F, is
1
cE(G)=1—2/ Li (2) dz.
0

Simplifyi Cc _ G 5 acE
implifying we have C;” = 1 — 1G] ~ 6AG) It follows that % > 0.

Q.E.D.

Similarly, in the decentralized case we have the following.

Corollary 2: For each party i = A, B and each jurisdiction j € {1,...,k},
the inequality (as measured by the Gini-coefficient of inequality) arising
from party ¢’s equilibrium decentralized redistributive/local public goods
schedule in jurisdiction j is decreasing in the utility provided by the local
public good, G;, for 1 < G; < 2. If G; > 2 then the local public good

is provided with certainty and there is no inequality. More precisely, for
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1 < G; £ 2 the Gini-coefficient of party ¢'s equilibrium decentralized
redistributive/local public goods schedule is CP = § (2+ G; - Gf)

Proof: From Theorem 3 and proposition 4, conditional on party ¢ choosing
to not provide the local public good in jurisdiction j the proportion of
voters in jurisdiction 7 who receive a utility level from party ’s equilibrium
centralized redistributive/local public goods schedule that is less than or

equal to z is

5(-2—_%? $6[0,2—‘Gj)

Fyj(le = 0) = : z € [2-Gj,Gy)
-Gy
itaedy r€(G2

By definition the Lorenz curve for ﬁ’,-,jlbi =01is

I F‘i?l (ze;=0)dz

L‘i (y) = !OI FiTjI(SCLi=0)d.'L‘7 y 6 [OJ 1] 3
which is equivalent to

2-G))y? ye[0,3)
L,;()= 2
Pl ER e -+ e-6) -1 velh

By definition, the Gini-coefficient for Fi,j]L,- =0is
1
CP (Gl = 0) = 1—2/ Li (z) dz.
0

Simplifying we have CP|; = 0 = é + —Géi. Then note that party ¢ offers
the local public good with probability G; — 1, and that when the public
good is offered there is no inequality. It follows that the unconditional

Gini-coefficient is given by

CP=2(2+G;-Gj)

O =

and that %I:— < 0. Q.ED.

Note that at the point where production of the local public goods becomes efficient,

G = 1, the inequalities in the centralized and decentralized systems are the same. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

addition, the inequality in the centralized system is increasing in the utility provided
by the local public goods, G, while the inequality in the decentralized system is
decreasing in the utility provided by the local public good, G;. Thus, for all strongly
efficient levels of utility provided by the local public goods, G > 1, the inequality

arising from the centralized system is greater than that in the decentralized system.

Corollary 3: For all strongly efficient levels of utility provided by the local
public goods, G > 1, the inequality arising from the centralized system is

greater than that arising from the decentralized system.

In both the centralized and decentralized systems there is ex ante inefficiency
in the equilibrium outcomes. However, from Theorem 2 each local public good is
produced with probability % in the centralized system, while from Theorem 3 each
local public good is produced with probability G; — 1 in the decentralized system.
3

It follows that the ex ante utility is higher in the centralized system if 1 < G < 3

and higher in the decentralized system if G; > %

Corollary 4: The ex ante utility is higher in the centralized system if

1€£G< g and higher in the decentralized system if G; > %

Thus, once the utilities of the local public goods are above a minimal threshold then

the decentralized system is more efficient than the decentralized system.

2.3 Conclusion

This paper extends Laslier and Picard’s {(2002) mode! of redistributive politics
with a finite population of voters to allow for centralized and decentralized redistribu-
tive competition with local public goods and shows that this highlights important
distinctions between centralization and decentralization that are absent from the
traditional theory of fiscal federalism. In equilibrium, the level of inequality (as
measured by the Gini-coefficient) arising from each party’s redistributive/local pub-

lic goods schedule is higher in a centralized system than in a decentralized system. In
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a centralized system the level of inequality arising in each party’s redistributive/local
public goods schedule is increasing in the utilities provided by the local public goods.
Conversely, in a decentralized system, the level of inequality arising in each party’s
redistributive/local public goods schedule is decreasing in the utilities provided by
the local public goods. In addition, if the utilities provided by the local public goods
are above a minimal threshold, then centralization is also found to create greater
inefficiencies in the provision of the local public good. However, the greater inef-
ficiency and inequality of centralization is due to the targetability of local public
goods and the ability to share revenue across districts and not to interjurisdictional
externalities or heterogeneities in the production of or preferences for local public

goods.
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2.5 Appendix

The proof of uniqueness of the equilibrium univariate marginal distributions in
Theorem 2, which is contained in the following lemmas, establishes that there exists a
one-to-one correspondence between the equilibrium univariate marginal distributions
of the utilities that result from any taxes/transfers and the equilibrium distributions
of bids from a unique set of two-bidder independent and identical simultaneous all-
pay auctions. The uniqueness of the equilibrium univariate marginal distributions
then follows from the characterization of the all-pay auction by Hillman and Riley
(1989) and Baye, Kovenock and de Vries (1996). In the discussion that follows, 3
is the upper bound of candidate i’s distribution of transfers for district j, and N is
the set of all voters.

Lemma 1: In any equilibrium, {P_;, P_;}, §f(j) < G; Viand z(j).

Proof: By way of contradiction suppose that there exists an equilibrium in
which §i‘(j ) > G, for at least one z (j). A feasible strategy for candidate B
is to play the equilibrium described in Theorem 2. Letting Z denote the set

of z (j) for which sz(j) > G, the vote share for candidate A, 74 is

_ k y 1 a(h)
TA = ,17 22:1 nx%A 4;)2—1,{ Zz(j)eé fo zdFy i
~z(j . .
5 2ntiyez Jo 29 (2) dFF9+
1“0‘ja 5 @ 2(5)
7n Ez(j)eZ G; Fp”’ (z — Gj)dF}

From equation (2) in Proposition 1 it follows that
k Y 1 j
% it ning + ﬁ Zz(j)¢Z_ fo xdFj(’) <
==2(5) .
1.1 3 #(5)
5= an Lagyez Jot TAFL

Thus after simplifying we have that

G; 2G)
LN %(7 %Zz(j)ez' f1 Tz —1)dF, "+
_z(4 . . "
T Sgez fot (—ddm—(1-0d) G +1)dF;D < §

The argument for player B is symmetric. Q.E.D.
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From Proposition 1 we know that the Lagrangian of candidate i’s optimization

problem is

ij=1

max
{L{,{Ff(”}

:GNj

k 1~o? ~al+20 j0f L a(j 205
% Ej=1 ZzeNj [)‘i fooo ["'—"Z\f—F—EJ) (z) — $] dF; (J)} + \in

where the set of univariate marginal distribution functions
{LZ, {F :(J)} }

ZGNj j=1

satisfy the constraint that there exists a n + k-copula, C, such that the support of

the n + k-variate distribution

c({Lf,{FZ‘”}EN }k )
-

) ) k ' ) .
is contained in {{L], {tz(])}zezvj}. . | E;?:l (L]nj + 2sen, tz(f)) = n}
i f =

The next three lemmas follow along the lines of the proofs in Baye, Kovenock,

and de Vries (1996).
Lemma 2: For each z (j) € N, 50 = 539 = 5#0),
Lemma 3: In any equilibrium, {P;, P_;}, no Ff(j ) can place an atom in the
half open interval (0, EZ(j)].
Lemma 4: For each z (j) € N and for each i € {4, B},
l:gﬁj%fE&Ff(j) (z) — x is constant V z € (0,5°].
The following lemma characterizes the relationship between A4 and Ap.
Lemma 5: In equilibrium Ay = AB%

k Al
n=Y_j_1njal

Proof: In any equilibrium each candidate must use their entire budget,

thus "
k A 52(J 2(5)
c . §z(j) 2(7
= Z:_’;:l (n]alB + ZZ(j)ENj fo :EdFB(J)) (2.4)

=n
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But, from lemmas 3 and 4, it follows that for all z (j) € N
Ap

dF29) (z) = " _ 2.5
A (@) 1—dy — o + 20405 (2:5)
for all z € (O, éz(j)], and
2(j A
dF9 (z) = A (2.6)

1- ozf;l - oz% + 2af4afg
forallx € (0, §"(j)]. Substituting equations 5 and 6 into equation 4 we have
F16)]

k j k 1 _
=10 T A8 2 1—of,—ol, +200, oy 2agen; o zdz =

k ] k 3
2j=1 nja]B + )\A Z — ZZ(j)ENj fos xdx = n.

3=11-0d, o} +207, 0}

The result follows immediately. Q.E.D.

Since 5 = 5*0) for all z(j) and —z (§) € N;, we can define 3 = 5°9). The
following Lemma establishes the value of &.

Lemma 6: 5 = (1 — o7, — o + 2c,0%) X min{;\%, /\L}

Proof: From lemmas 4 and 5, we know that for each candidate ¢ and voter

z (j) in district j

1—a£—a§+2aﬁa§3
Ai

is constant V x € (0, §z(j)]. It then follows that candidate ¢ would never use

FP9 (2) -«

. . 1—a, —od, 4207, o) .
a strategy that provides transfers in { —4—2-—4-2 o0 ) since an offer of
T

zero strictly dominates such a strategy. The result follows directly. Q.E.D.
The following lemma establishes that of = o; V i and 7.
Lemma 7: In equilibrium, for each candidate 2 a{ =o; Vj.
Proof: From the Lagrangian of candidate j’s maximization problem the
first order condition with respect to o is
nj(l—od, =)+ > (—1-{—20/_1-)/ F9 (2)dFf9 =0 (27)
AG)EN; 0

From Lemmas 3 and 4, and noting that

J —i\2

Yo A (5)

Fl (2)dzx =5 — AL —

/0 (@) 2 (1 — oy — oy + 2d040%)
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equation 7 can be written as
nj (1 —ol;=X)
+nj (—1+2d,) (& - M) ( Ao ) =0
J -t 2(1—&%—0%%—20{4043) 1-0/, —ofg+207, oy
From Lemma 6, we can assume, without loss of generality, that & =

1—_«12-_6;’?%_‘2@“43’3 V j. Thus equation (7) becomes

n; (1— o, —N) +n; (=1+2d) (1 - 2—;_-) =0. (2.8)

The result follows directly from the fact that equation (8) holds for all j.
Q.E.D.

Lemma 8: For each candidate 4, there exists a unique value for A;.
Proof: By symmetry of the parties payoffs and from Lemmas 5 and 7 we

have that
l-o_y)o;+(1—ay— o+ 20 0) (1 - 2—1(%:—)) =
(I—a)a;+ (1 —ao; — o + 20_0) (ﬁ)

It follows directly oy = a_; = %

From equation (8) it follows that A; = ;. Q.E.D.

This completes the proof of Theorem 2.
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3. Electoral Poaching and Party Identification
Joint Work with Dan Kovenock

In the model of redistributive politics, political parties compete for representation in
a legislature by simultaneously announcing binding commitments as to how they will
allocate a budget across voters. Each voter votes for the party offering the highest
level of utility, and each party’s payoff is its representation in the legislature, which
under proportional representation is equal to the fraction of votes received by that
party. Originally formulated by Myerson (1993), the model has served as a funda-
mental tool in the analysis of electoral competition. In recent years, the model has
attracted renewed interest through its application to the study of the inequality cre-
ated by political competition (Laslier (2002), Laslier and Picard (2002)), incentives
for generating budget deficits (Lizzeri (2002)), inefficiency of public good provision
(Lizzeri and Persico (2001,2002)), and campaign spending regulation (Sahuguet and
Persico (2004)).

This paper extends the model of redistributive politics to allow for heterogeneous
voter loyalties to political parties and shows that this has important implications for
the nature of redistributive competition. Voters are distinguished by the party with
which they identify, if any, and the intensity of their attachment, or “loyalty,” to
that party. We assume that parties are able to perfectly discriminate across voters
by their party affiliation and the intensity of their attachment (including the set of
“swing voters” who have no attachment to either party). Parties compete by si-
multaneously announcing offer distributions to each of the identified voter segments.

When integrated over all segments, each party’s offer distributions must satisfy a
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common aggregate budget constraint.! As in Myerson, each voter is assumed to
vote (sincerely) for the party that offers the higher level of utility which, in our
model, reflects both the transfer offered and the voter’s loyalty.

We completely characterize the unique Nash equilibrium of this model and, ex-
plore its qualitative nature. In equilibrium, within any given voter segment, the
expected transfers from the two parties’ offer distributions are identical. However,
we find that voters pay a price for being loyal to a party. For a given distribution
of voters’ attachments to political parties, the expected transfer that voters receive
is strictly decreasing in the voters’ intensity of attachment (regardless of party affil-
iation). This monotonicity of transfers also translates into a monotonicity of utility.
Although the expected utility provided by a party’s redistribution schedule is iden-
tical for all of its loyal voter segments and equal to the expected utility that the
swing voters receive from each party’s redistribution schedule, the expected utility
that a party’s loyal voters receive from the opposition party’s redistribution schedule
is decreasing in the voters’ level of attachment.

Moreover, we find that the parties have an incentive to target or “poach” a subset
of the opposition party’s loyal voters, in an effort to induce those voters to vote
against their party. By “poaching” we mean a strategy of targeting each segment
of the opposition party’s loyal voters with a redistribution schedule that “freezes
out” a portion of the segment with a zero transfer, but gives the remaining voters in
the segment non-zero transfers which are higher in expectation than the opposition
party’s offers to the same segment. This captures the notion that a party may try to
selectively induce a strict subset of the opposition’s loyal voters to defect by offering

them a higher transfer.

1As in Myerson (1993) each offer distribution is a probability distribution over the nonnegative
real numbers with the measure over each interval interpreted as the fraction of the particular
loyal voter segment for whom the party’s transfer has value in that interval. Since we assume a
continuum of voters in each segment and offers that are independent across voters (each voter takes
an independent draw from the offer distribution) we may appeal to Judd (1985) in assuming that
the aggregate budget constraint holds with probability one and not just in expectation.
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To facilitate our analysis we also construct a natural measure of “party strength”
based on both the sizes and intensities of a party’s loyal voter segments and show
how party behavior varies with the two parties’ strengths. We demonstrate that each
party’s vote share is increasing (decreasing) in its own (opponent’s) party strength.
We also find that as the opposition party’s strength increases, a party’s equilibrium
redistribution schedule freezes out a larger set of the opposition’s loyal voters and
gives a higher expected transfer to those not frozen out. The party’s own loyal
voter segments also receive a higher expected transfer. Although it is not obvious
from these effects, the level of inequality (as measured by the Gini-coefficient) in a
party’s equilibrium redistribution schedule is also increasing in the opposition party’s
strength.

As is common in models of electoral competition, the policy implemented by
the legislature is assumed to be a probabilistic compromise of the parties’ equilib-
rium redistribution schedules. The probability that a party’s schedule is adopted is
proportional to the size of its legislative contingent.? From the characterization of
equilibrium described above, it immediately follows that for a given distribution of
voters’ attachments to the political parties, the equilibrium expected transfers and
resulting expected utilities from the implemented policy are highest for swing voters
and strictly decreasing in the intensity of attachment.> Moreover, defining the “level
of partisanship” as the sum of the parties’ strengths, we find that partisanship pre-
serving transformations of the electorate that increase the strength of party i at the
expense of party —i result in party ¢’s loyal voters receiving higher expected utilities
and party —i’s loyal voters receiving lower expected utilities from the implemented

policy.

2This interpretation is due to Grossman and Helpman (1996). Probabilistic compromise can also
be viewed as a system under which each party distributes a fraction of the budget, proportional to
its representation in the legislature, according to its announced schedule. This approach is taken
in Myerson (1993).
3For expected transfers this result holds regardless of party affiliation; for expected utilities it holds
within each party.
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We also develop a measure of “political polarization” that is increasing in the
sum and symmetry of the parties’ strengths and show that the expected ex-post
inequality in utilities (as measured by the expected Gini-coefficient) under the im-
plemented policy is increasing in political polarization. In particular, partisanship
preserving transformations of the electorate that decrease the difference in the par-
ties’ strengths increase the expected ex-post inequality in utilities of the implemented
policy. Hence, for a given level of partisanship, the expected ex-post inequality in
utilities is maximized when the parties are of equal strength. In addition, holding
constant the difference in the parties’ strengths, the expected ex-post inequality in
utilities increases as the level of partisanship increases. That is, higher levels of
partisanship and more symmetry in the parties’ strengths generate inequality.

Two related papers are Laslier (2002) and Dixit and Londregan (1996). Laslier
(2002) examines the issue of tyranny of the majority* in a model of redistributive
politics with a segmented homogeneous electorate and intra-segment homogeneity
in a party’s offers. That is, within each voter segment, a party’s offer distribution is
assumed to be degenerate with all mass on the fixed offer for that segment (although
offers may vary across segments). In this context, Laslier finds that there is no
tyranny of the majority as long as there does not exist a segment that contains over
half of the voters. However, if any segment contains over half of the voters, each
party uses its entire budget on that segment, thereby freezing out the remaining
voters.

Our model extends the Laslier model in two ways. First, we allow for a heteroge-
neous electorate, partitioned into distinct segments of homogeneous voters. Second,
we allow for intra-segment heterogeneity in a party’s offers, as represented by the

(general, non-decreasing) segment specific offer distributions. Since our model as-

4Tocqueville describes tyranny of the majority as follows,
“For what is a majority taken collectively if not an individual with opinions and, more
often than not, interests contrary to those of another individual known as the minority.
Now, if you are willing to concede that a man to whom omnipotence has been granted
can abuse it to the detriment of his adversaries, why will you not concede that the same
may be true of a majority?” (pp. 288-289)
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sumes that the implemented policy is a probabilistic compromise of the parties’
redistribution schedules, a natural analogue of “tyranny of the majority” is the de-
gree to which the implemented policy tyrannizes a minority by driving them down to
their reservation utility level. In our model this arises when the implemented policy
freezes out voters by giving them an ex-post transfer of zero.> Indeed, under our
assumption that the probability that a party’s schedule is adopted is equal to the
size of its vote share, the expected measure of the set of voters receiving a transfer
of zero under the implemented policy is proportional to our measure of polarization.
That is, polarization leads to tyranny.’

Dixit and Londregan (1996, Henceforth D-L) is perhaps closest to our paper in
focus. Both papers assume voters derive utility from redistribution and party iden-
tification. Both assume a heterogeneous electorate, partitioned into distinct voter
segments. While D-L assume a non-degenerate distribution of voter attachments
within each segment (represented by a segment-specific density), in our model, vot-
ers within a given segment are homogeneous, corresponding to perfect discrimination
by party affiliation and intensity of attachment. Moreover, like Laslier, D-L assume
intra-segment homogeneity in a party’s offers. That is, within each voter segment, a
party’s offer distribution is assumed to be degenerate with all mass on the fixed offer
for that segment. This, together with intra-segment heterogeneity of voters, pre-
cludes the ability to directly target voters by intensity of attachment. In contrast,

our model allows for intra-segment heterogeneity in a party’s offers, as represented by

5An alternative interpretation of tyranny of the majority refers to an outcome in which a major-
ity receives a higher utility than some designated minority. In the equilibrium in our model, the
expected utility, conditional on receiving a positive transfer in the implemented policy, is identical
for all voters. Hence, among voters not frozen out there is a form of (conditional) equal treatment.
However, within each party, the greater a voter’s intensity of attachment, the lower his expected
utility from the implemented policy. This arises because parties never freeze out their own loyal vot-
ers and the probability that a party’s offer distribution freezes out an opposition voter is increasing
in that voter’s attachment.

8This formulation of tyranny would not apply to Myerson'’s interpretation of probabilistic compro-
mise as a system under which each party distributes a fraction of the budget, proportional to its
representation in the legislature, according to its announced schedule. Under this interpretation,
no voters would be frozen out ex post in the implemented policy. However, under the implemented
policy the unequal treatment (in utilities) of the more loyal voter segments within each party would
continue to hold.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

a (general, non-decreasing) segment specific offer distribution. Hence, in our model,
not only are parties able to directly target voters by party affiliation and intensity
of attachment, they are also able to (anonymously) offer discriminate across voters
within a given segment.

In section 2 we present the model and characterize the unique Nash equilibrium
of the game of redistributive politics with party identification. Section 3 explores
the qualitative nature of the equilibrium and presents comparative statics results
with respect to changes in measures of party strength, partisanship, and political

polarization. Section 4 concludes.

3.1 The Model
Political Parties and the Legislature

Our model extends Myerson’s (1993) two-party model of redistributive competition
by including heterogeneous voter loyalties to political parties. Two parties, A and
B, make simultaneous offers to each of a continuum of voters of unit measure. Each
voter votes for the party offering the higher level of utility, and each party’s payoff
is its representation in the legislature, which under proportional representation is
equal to the fraction of votes received by that party. All offers must be nonnegative
and each party has a budget of 1, which corresponds to 1 unit of a homogeneous
good per voter. Parties are assumed to have complete information regarding the
party preferences of all voters. While this is a stylized assumption, this is not an
unreasonable benchmark given the high level of organization of modern political
parties.”

As is commonly assumed in the literature on electoral competition, the legislature
implements a policy that is a probabilistic compromise of the parties’ redistribution

schedules. The policy that the legislature implements is a random variable which

"See for example PBS (2004) which discusses the high level of information that national political
parties have access to and use to target voters.
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takes on party A’s equilibrium redistribution schedule with probability equal to party
A’s equilibrium vote share and takes on party B’s equilibrium redistribution schedule

with probability equal to party B’s equilibrium vote share.

Definition: The implemented policy is a random variable that takes on
party A’s equilibrium redistribution schedule with probability equal to party
A’s vote share and party B’s equilibrium redistribution schedule with prob-

ability equal to party B’s equilibrium vote share.
Voters

Voters are distinguished by the party with which they identify, if any, and the inten-
sity of their attachment to that party. In this paper, we consider only distributions of
voters’ attachments to the political parties with support on a finite set of intensities
of attachment. Let éf € (0,1) represent the number of units of the homogeneous
good that party ¢ must offer a loyal voter in its own loyal segment j in order to make
that voter indifferent between the two parties when party —i offers one unit of the
homogeneous good.® Thus, the utility that each loyal voter in party i’s segment j

receives from an offer of 24 from party A is

z* ifi=B

u (@) = ifi=A

(15'71_1
Define a'z =1 —5{ to be the intensity of attachment of party i’s loyal voter segment j.
Party A’s loyal voters have a finite number, n 4, of different intensities of attachment.
Let A be the set of all indices of intensity of attachment for voters loyal to party
A. Each index of intensity j € A corresponds to a segment of voters with intensity
of attachment aﬁ and measure m; > 0. The size of party A is denoted by M, =
Eje 4m;. Similarly, party B’s loyal voters have a finite number, np, of different

intensities of attachment. Let B be the set of all indices of intensity of attachment

8This type of effectiveness advantage originates, to the best of our knowledge, with Lein (1990)
and is frequently used in the literature on unfair contests (see for instance: Clark and Riis (2000},
Konrad (2002), and Sahuguet and Persico (2004)).
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for voters loyal to party B, where A and B are disjoint sets. Each index of intensity
k € B corresponds to a segment of voters with intensity of attachment a¥ and
measure my, > 0. The size of party B is denoted by Mp = ), .z my. There are also
swing voters who do not identify with either party. Letting S be the index for no
attachment to either party, the utility that each swing voter receives from an offer
of #¥ from party j is
ug (:r]) = 2 forj=AB

The measure of swing voters is mg = 1 — My — Mg > 0. To summarize
{{mj, af;‘ }j A’ {mk, a’fs,} 5 EB} is a feasible distribution of voters’ attachments to the
political parties if n4 and np are finite, M4 +Mp < 1,and m; > 0 for all j € AUB.

Each voter votes for the party that provides them the higher utility. Thus each
swing voter votes for the party that makes them the higher transfer, while each loyal
voter requires a proportionally higher transfer from the rival party in order to induce
him to cross over. Representation in the legislature is allocated proportionally. Thus,
we normalize each party’s representation in the legislature to be equal to the fraction
of the votes received by that party.

One simple yet important summary statistic of a party’s distribution of loyal
voters is the sum across segments of each segment’s intensity of attachment weighted

by the measure of the set of voters in that segment.

Definition: The strength of party A is denoted by g4 = Zje 4 mja{;. The
strength of party B is denoted by op = 3, .z myak

Several properties of this summary statistic should be noted. First, holding constant
the size of each of a party’s loyal segments, the party’s strength is strictly increasing
in the intensity of the attachment of any of these segments. Second, holding constant
the intensity of attachment of each of its loyal segments, the party’s strength is
strictly increasing in the size of each of these segments. Finally, holding constant
a party’s size, the party’s strength is strictly increasing as loyal voters shift from

weaker intensities of attachment to stronger intensities of attachment.
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Given the parties’ strengths, o4 and o, it is useful to derive two simple measures

for the distribution of voters’ attachments to the political parties.

Definition: The level of partisanship is the sum of the parties’ strengths,

which is denoted by ¢ =04 + 05.

Definition: The effective strength of party ¢ is denoted by ¢; = 0, — 0_;.
The level of partisanship is the sum across the entire electorate of each segment’s
intensity of attachment, to either party, weighted by the measure of the set of voters
in that segment. The properties of the level of partisanship are similar to those of
the parties’ strengths. Holding constant the size of each loyal segment, the level of
partisanship is strictly increasing in the intensity of attachment of each segment.
In addition, the level of partisanship is strictly increasing as loyal voters shift from
weaker intensities of attachment to stronger intensities of attachment or as swing
voters become affiliated with a political party. The effective strength of party ¢
measures the asymmetry between party 7 and party —i. If the parties have symmetric

strengths then each party has an effective strength of 0.
Redistributive Competition

A strategy, which we label a redistributive schedule (or offer distribution), for party ¢

is a set of cumulative distribution functions,® { F}} one distribution function

JEAUSUB’
for each segment j € A of voters loyal to party A, the segment of swing voters S,
and each segment k € B of voters loyal to party B. As in Myerson (1993) each F} (z)
denotes the fraction of voters in segment j whom party 7 will offer a transfer less than
or equal to . The only restrictions that are placed on the set of feasible strategies is
that each offer must be nonnegative and the set of cumulative distribution functions
must satisfy the budget constraint:

> mj/o zdF! <1 (3.1)

JEAUSUB

91n this case the focus is on the distributions within each segment (marginal distributions) rather
than an n-variate joint distribution. As discussed in the appendix, an n-variate joint distribution
is trivial to obtain and adds nothing to the problem analyzed here.
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Redistributive competition is the one-shot game, which we label

¢ ({{mﬂ" u’il}jE.A s ag}keﬂ}) ’

in which parties compete for representation in the legislature by simultaneously

announcing redistributive schedules, subject to a budget constraint.
Optimal Strategies

The following theorem characterizes the equilibrium of the redistributive competition

game.
Theorem 1: The unique Nash equilibrium of the redistributive competition
game G ({{mj, aﬂ}jeA, {mk, a%}keB}) is for each party 7 to choose offers
according to the following distributions. For party A

VieA Fi(z) = z(1faﬁ,) z€[0,2(1-d))]
FS(z) =& z€0,7]
VkeB Fi(z)=ah+ (1-df)2 z € 0,z].

Similarly for party B

VkeB F};(x)zz(lfa,%) z€[0,2(1—af)]
Fi(x)=2 z € [0, 2]
VieA Fha)=d,+(1-d))2 z €(0,2],
where z = % = l—aj—aB' In equilibrium, party A’s share of the vote is
1404 = 1494298 and party B’s share of the vote is 08 = ltop-oa

Proof: We begin by showing that this is an equilibrium. First, this is a

feasible strategy since:

Z mj/ooa:dFij =1
0

JjEAUSUB
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Then given that party B is following the equilibrium strategy, the vote
share 74 (-) for party A, when it chooses to provide transfers according to

an arbitrary strategy { F fjl}je Ausug 18

A ({Fj, Fé}jeAUSUB) = ZjEAmJ' fooo Fé (1-1;1{,) dﬁ’i (2)
+ms [y F§ (z) dF3 ()
+ Lkes™u J Fi (20) dFf (x)

Since it is never a best response for party A to provide offers outside the

support of party B’s offers, we have:

= i 2(1-d] =i
A ({Fi’Fg?}jeAuSUB) = %Z- AT fo( 2 zdF} (z)
2 \" m nJ 1. mg rzq/ZFS(jw
TA ({FiaFg?}jeAusuzs) =1 ZJEA ] fO * dFJ ()

+ ZjeA mjaA + 52 fo zdFj (z)
But from the budget constraint given in equation (1) it follows that

=i j 14+04—0p
i
7TA({F’FB}]‘EAUSUB>~— +Zm3 -T2
JjeA

which holds with equality if {F’/{}j cAUSUB 18 the equilibrium strategy. Thus
party A’s vote share cannot be increased by deviating to another strategy.
The argument for party B is symmetric.

In the appendix, the strategic equivalence between two-party games of re-
distributive politics with segmented voters and independent simultaneous
two-bidder all-pay auctions is established. The proof of uniqueness then fol-
lows from the arguments appearing in Baye, Kovenock and de Vries (1996).

Q.E.D.
The following example illustrates the key features of Theorem 1.

Example: Assume that there are only two types of voters: voters loyal

to party A and voters loyal to party B. Let my = %-, a4 = %, mpg = -23;,
and ag = %. Party A’s and party B’s strengths are g4 = % (%) = é and
og = % (%) = %, respectively. Party A’s and party B’s equilibrium vote
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shares are 124 = 1t24=98 = 1 apd 128 = 149804 — 2 regpectively. The
transfers and resulting utilities from the unique equilibrium redistribution
schedules given by Theorem 1 are shown in Figure 1 below. As party —i’s
loyal voters’ intensity of attachment, a_;, increases, party ¢ freezes out a

larger proportion of —i’s loyal voters with a zero transfer. This is represented

graphically in Figure 1(a) and 1(b) as shift up of F;* (0) = a_;.

F () Fi (z)
1+ 1+
a7
+ z i : z
2 z(1—a;) z
Party -i’s Loyal Voters Party i’s Loyal Voters

Figure 1(a): Transfers from Party i’s Equilibrium Redistribution Schedule

F (x) F} (2)
1+ 14 .
;A
| | T
. v
Party -i’s Loyal Voters Party i’s Loyal Voters

Figure 1(b): Utilities from Party i’s Equilibrium Redistribution Schedule
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Note that, each party’s equilibrium vote share is increasing (decreasing) in its
own (opponent’s) party strength. Party identification also creates an incentive for
parties to utilize a poaching strategy which freezes out a portion of the opposition’s
loyal voters with a zero transfer, but gives the remaining opposition voters non-
zero transfers which are higher in expectation than the opposition party’s offers. A
similar poaching effect has been addressed in the industrial organization literature
on brand loyalty and brand switching. For example, Fudenberg and Tirole (2000)°
examine a duopoly model of brand loyalty and brand switching where firms try
to poach the competitor’s loyal consumers. The electoral poaching examined here
differs from Fudenberg and Tirole (2000) in that the focus is on redistribution rather

than short-term versus long-term contracts.

3.2 Transformations of the Electorate

We now apply Theorem 1 to explore the qualitative nature of the equilibrium
and present comparative statics results with respect to changes in measures of party
strength, partisanship, and political polarization. We begin with the nature of the
equilibrium for a given distribution of voter attachments. In redistributive com-
petition with heterogeneous voter loyalties, each party announces a distribution of
offers for each segment of the electorate. In the discussion that follows we refer to
the expectation of a party’s equilibrium distribution of offers over a segment as that
segment’s equilibrium expected transfer from the party’s redistribution schedule. A
segment’s equilibrium expected utility from the party’s redistribution schedule is sim-
ilarly defined, as are both the eciuilibrium transfer and utility from the implemented
policy.

Despite the fact that from Theorem 1 the parties’ equilibrium redistributive
schedules differ in all segments of loyal voters, for each segment, the expected transfer

from each party, and thus from the implemented policy, is the same. Furthermore,

108ee also Lee (1997).
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for a given distribution of voters’ attachments to the political parties, the expected
transfers are highest for the swing segment and are strictly decreasing in the inten-
sity of attachment to a party. Thus, voters with the highest intensity of attachment
receive the lowest expected transfers and swing voters receive the highest expected
transfers. However, the poaching strategies utilized by the parties freeze out a por-
tion of the opposition party’s loyal voters with a zero transfer, and offer the remaining
portion of the opposition party’s loyal voters non-zero transfers which are higher in
expectation than the opposition party’s transfers. For each segment, conditional on
receiving a positive transfer from the opposition party the expected transfer from
the opposition party is equal to the expected transfer of the swing segment.

Corollary 1: Within any given voter segment, the expected transfers from

the two parties are identical. For a given distribution of voters’ attachments

to the political parties, the expected transfers are strictly decreasing in

the intensity of attachment (regardless of party affiliation). Conditional on

receiving a positive transfer from the opposition party, within each loyal

voter segment the expected transfer from the opposition party is equal to

that of the swing voter segment.

Proof: From Theorem 1 the swing voters equilibrium expected transfer

from each party and from the implemented policy E° (-) is

B ({{m]-, af‘l}jeA’ {ma, a%}kes}) =15

Similarly, for each segment j € A of party A’s loyal voters the equilibrium
expected transfer from each party and from the implemented policy E7 (*)

is

EJ ({{mj) C‘ix}jew {mk, a%}keB}) = 11:?
Conditional on receiving a positive transfer from party B, for each segment
j € A of party A’s loyal voters the equilibrium expected transfer from party
B E% () is

By ({{m, b} e 0 (s )i ) = 5
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The argument for voters loyal to party B is symmetric. Q.E.D.

The swing voter segment is the most contested segment since neither party has
an advantage, and, thus, the equilibrium transfers are the highest in this segment.
The presence of voter loyalties to the political parties creates an incentive for the
parties to target or poach a subset of the opposition party’s loyal voters. However,
as a segment’s intensity of attachment increases it becomes more difficult for the
opposition party to induce a voter in that segment to vote against their party. Thus,
the proportion of a segment’s loyal voters that the opposition party targets with
non-zero transfers is decreasing in the intensity of attachment. As the more attached
segments are targeted less by the opposition, the affiliated party optimally diverts
resources away from its most attached loyal voter segments to the other segments.
This result is independent of the measures of the segments and the parties’ strengths.

One difference between our results on expected transfers and the analysis of the
resulting utilities is that for loyal voters the expected utilities from the affiliated
party’s redistribution schedule are higher than the unconditional expected utilities
from the opposition party’s redistribution schedule. In fact, the expected utility that
each segment of loyal voters receives from the affiliated party’s redistribution schedule
is equal to the expected utility that the swing voters receive from either party’s
redistribution schedule. In addition, conditional on receiving a positive transfer, the
expected utility that each subset of loyal voters receives from the opposition party’s
redistribution schedule is also equal to the expected utility that the swing voters
receive. Thus, since the proportion of a segment’s loyal voters that is targeted with
non-zero transfers is decreasing in the intensity of attachment, the unconditional
expected utility that each segment of loyal voters’ receives from the opposition party’s

redistribution schedule is strictly decreasing in the intensity of attachment.

Corollary 2: For all loyal voter segments, the expected utility from the
affiliated party’s redistribution schedule and the expected utility conditional
on receiving a positive transfer from the opposition party’s redistribution

schedule are identical and equal to the expected utility that the swing voters
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receive from either party’s redistribution schedule. For a given distribution
of voters’ attachments to the political parties, loyal voters’ unconditional
expected utilities from the opposition party’s redistribution schedule are
strictly decreasing in the intensity of attachment.

Proof: We present the argument for party A’s loyal segments. The ar-
gument for party B’s segments is symmetric. From Theorem 1, for each
segment j € A of party A’s loyal voters the equilibrium expected utility
from party A, and the expected utility conditional on receiving a positive

transfer from party B, EU% (-) and EU} + (+) respectively, are

U4 ({{ms, o} eqs e b }en}) =
BUL, ({{m 04} e {me 08 e | ) = 15
From Corollary 1, this is equal to the expected utility for swing voters,
EUS = ES.
The second part of the corollary follows from the fact that for each segment
j € A of party A’s loyal voters the equilibrium unconditional expected

utility from the opposition party’s redistribution schedule, EU}; (), is

EU% ({{mj,aix}jeA, {mk,a’g}keg}) = Fi = 11—_31
Q.E.D.

In fact, the equivalence between loyal voters’ utilities from the affiliated party’s
redistribution schedule, the targeted loyal voters’ utilities from the opposition party’s
redistribution schedule, and the swing voters utilities from both schedules is stronger
than stated. The distribution of loyal voters’ utilities from the affiliated party, the
distribution of targeted loyal voters’ utilities from the opposition party, and the
distributions of swing voters utilities from both parties are identical.

Given these static properties of the equilibrium transfers and resulting utilities we
now examine comparative statics with respect to transformations of the electorat-e.
We will focus mainly on two simple transformations of the electorate. The first,

a partisanship preserving transformation of the electorate, reflects a change in the
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symmetry of the parties’ strengths while holding the level of partisanship constant.
The second, an effective party-strength preserving transformation of the electorate,
reflects a change in the level of partisanship while holding the absolute difference
in the parties’ strengths constant. These two types of transformations are repre-
sented graphically in Figure 2. In (04, 05) space, for a given level of partisanship,
the set of partisanship preserving transformations forms a line with slope of —1,
and for fixed effective party strengths, the set of effective party-strength preserving

transformations forms a line with slope of +1.

04

Effective Party Strength Preserving

B

og ad oh

Figure 2: A transformation of the electorate that changes party strengths from
C = (0%,0%) to D = (0’5, 0’;) is a partisanship preserving transformation. A
change from C to E = (05, ¢%;) is an effective party-strength preserving

transformation.

Another transformation that we examine is one that holds constant or fixed the
intensities of the attachment to parties, while shifting the electorate across the given
set of intensities. The following corollary examines how, given fixed intensities of
attachment, partisanship preserving and partisanship increasing transformations of
the electorate change each voter segment’s expected transfers and utilities. Proof of

the corollary follows directly from Corollaries 1 and 2.
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Corollary 3: Given {{mj, af;}jeA, {mk, a’g}keg}, a partisanship preserv-
ing (resp., increasing) transformation of the electorate that leaves the in-
tensities of attachment, {af;l}je " {a%} yege lixed leaves invariant (resp.,
increases) the expected transfer and utility received from each party’s re-
distribution schedule by voters within a given voter segment j € A, k € B,

orS.

Given fixed intensities of attachment, partisanship preserving transformations of
the electorate hold constant both the measure of the set of voters that receives a
zero transfer from one of the two parties and the expected utility, conditional upon
receiving a positive offer, received from either party’s redistribution schedule. In
addition note that in party i’s equilibrium redistribution schedule the proportion of
party —i’s loyal voter segment j that receives a zero transfer is equal to segment j’s
intensity of attachment, al ;- Thus, the measure of party —i’s loyal voters who receive
a zero transfer from party i is equal to party —i’s strength, o_;. Regardless of which
party gains and which party loses, in a partisanship preserving transformation of the
electorate the measure of the set of voters that receive a transfer of 0 from one of the
two parties remains invariant. Similarly, partisanship increasing transformations of
the electorate result in an increase in the measure of the set of voters who receive a
transfer of 0 from one of the two parties.

These corollaries highlight several features of the nature of equilibrium poaching.

These are summarized in the following corollary.

Corollary 4: The proportion of loyal voter segment j of party ¢ that re-
ceives a transfer of 0 from the redistribution schedule of party —i is af .
Conditional upon receiving a positive transfer from party —¢, the expected
transfer and utility received by a loyal voter in segment j of party i is ﬁ
The unconditional expected transfer to a voter in segment j of party i from

i
the redistribution schedule of party —i is 1—_‘} The proportion of party i’s

loyal voters who receive a transfer of 0 from party —i is 3.
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This characterization of each party’s equilibrium poaching raises the question of
how changes in voter loyalty to political parties affect the inequality arising from the
equilibrium redistribution schedules. Remarkably, the comparative statics analysis
of changes in inequality in the distribution of transfers is considerably more complex
than the analysis of changes in the distribution of utilities. The Lorenz curves for the
distributions of transfers arising from each party’s redistribution schedule are piece-
wise quadratic functions that depend critically on each parameter in the distribution
of voters’ attachments to the parties. The kinks in these curves make it difficult to
obtain unambiguous comparative statics results. It turns out that comparative stat-
ics results on the inequality in utility are more straightforward. Corollary 5 addresses
inequality in the distribution of utilities arising from each party’s equilibrium offer
distribution as measured by the Gini-coefficient of inequality.

Corollary 5: For each party i = A, B, the inequality (as measured by
the Gini-coefficient of inequality) arising from the party’s equilibrium re-
distribution schedule is increasing in the opposition party’s strength. More
precisely, the Gini-coefficient of party ¢’s equilibrium redistribution schedule
isC;=1+%i=AB.

Proof: From Theorem 1, the measure of the set of voters who receive a
utility level from party A’s equilibrium redistribution schedule that is less
than or equal to z is

Fy(z)= kaa% + z (ka (1—af)+ Z mj>

keB keB JEAUS
for = € [0, 2]. Simplifying, F4 (z) = o + % (1 — 0p) for z € [0, z].
By definition the Lorenz curve for Fyis

JEE N (a)d

Laly) = TFew Y€ [0, 1],
which is equivalent to

0 if y€[0,08]

- 2 .
weten if y € (op,1)

La(y)=

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

By definition, the Gini-coefficient for F is
1
Ca ({{mj"sfél}jeAv {mk: 5263}};&8}) =1- 2/ L(z)dz.
op
Simplifying we have C4 = 31,; + 2—‘_,’33 It follows that %};‘ > 0. A similar
argument establishes the property for party B’s equilibrium redistribution

schedule. Q.E.D.

Party ¢ has an incentive to target a different proportion of the voters from each
of party —i’s loyal segments. As the intensity of attachment of a given segment of
—i's voters increases, the proportion of that segment that receives a transfer of 0
increases. As aresult, the aggregate inequality in party ¢’s equilibrium redistribution
schedule increases.

More generally, as Corollary 5 states, any change in the distribution of voters’
attachments to the political parties that leads to an increase in the strength of
party —i, results in an increase in the aggregate inequality of party ¢’s equilibrium
redistribution schedule. Moreover, freezing out by party ¢ increases in the sense
that the measure of party —i’s loyal voters that receive a transfer of 0 from party ¢
increases.

Given the assumption that the legislature implements a probabilistic compro-
mise of the parties’ equilibrium redistribution schedules, we can also examine the
expected utilities and the expected ex-post inequality of utilities from the imple-
mented policy. To measure changes in the expected utility from the implemented
policy, we must take into account changes both in the level of partisanship and in
the parties’ effective strengths. In particular, for fixed intensities of attachment, par-
tisanship preserving transformations of the electorate that increase the strength of
party 7 increase party ¢’s loyal voters’ expected utilities from the implemented policy
and decrease party —i’s loyal voters’ expected utilities from the implemented policy.
Conversely, effective party-strength preserving transformations of the electorate that

increase the level of partisanship increase all voters’ expected utilities.
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Corollary 6: Given fixed intensities of attachment to the parties, partisan-
ship preserving transformations of the electorate that increase the strength
of party 7 increase party i’s loyal voters’ expected utilities and decrease party
—1i’s loyal voters’ expected utilities from the implemented policy. In addi-
tion, effective party-strength preserving transformations of the electorate
that increase the level of partisanship increase all voters’ expected utilities
from the implemented policy.

Proof: From Theorem 1, for each segment j € A of party A’s loyal vot-
ers the equilibrium expected transfer from the policy implemented by the

legislature EUY () is

EU’ ({{mj,ai,}jeA, {mk’a%}kth}) =

() () + (A2 (24

which is increasing in 64 and thus decreasing in 65 = —64. The argument
for voters loyal to party B is symmetric.

The second part of the corollary follows from the fact that for each segment

jeA ,
OEUY -0
do
The argument for swing voters and voters loyal to party B follows directly.
Q.E.D.

The implications of these results for the expected ex-post inequality of utilities
from the implemented policy are examined in the following corollary. We use the
expected Gini-coefficient to measure expected ex-post inequality and refer to the

expected Gini-coefficient as the “aggregate inequality.”

Corollary 7: Partisanship preserving transformations of the electorate that
increase the symmetry in the parties’ strengths increase the aggregate in-
equality of the implemented policy. Moreover, for a given level of parti-
sanship, o, the aggregate inequality arising from the implemented policy is

maximized when the parties are of equal strength, 04 = op. Conversely,
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effective party-strength preserving transformations of the electorate that
increase the level of partisanship increase the aggregate inequality of the
implemented policy.

Proof: From Corollary 3, the aggregate inequality arising from the imple-

mented policy is

Honon) = (454) (252) + (52 (145)

Simplifying we have I (g4,08) = § + #.
The first and third parts of the corollary follow directly. The second part
follows from the fact that for a given level of partisanship, o, I (c4,05) is

maximized when 64 =0, 0or 64 =0 = % Q.E.D.

Hence, for a given level of partisanship symmetry in party strength generates inequal-
ity. Similarly, for given effective party-strengths, partisanship generates inequality.
Our results on party strength and inequality are closely related to issues arising
in the literature on polarization.!* Although much of this literature deals with the
distribution of income, its tenets can be adapted to our context of redistributive
politics. An interesting question that arises is whether there is a simple measure, of
“political polarization,” defined over the primitives of the model, with the property
that the aggregate inequality from the implemented policy is increasing in the mea-
sure. It turns out that the answer is yes. Indeed, we base this measure solely on the

party strengths. Setting
_ 2 2
P(oas,08) =0 —(64) =0 — (6B)

it is easily demonstrated that the aggregate inequality in utilities arising from the

implemented policy is increasing in P (-, ).
Corollary 8: The aggregate inequality in utilities arising from the imple-

mented policy is increasing in the measure of political polarization P (g4, 0B).

11Gee for example: Esteban and Ray (1994), Wolfson (1994), Wang and Tsui (2000), and Rodriguez
and Salas (2003).
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The level curves of the political polarization measure and the aggregate inequality

of utilities from the implemented policy are shown in Figure 3 below.

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

%A

Figure 3: Level Curves of Political Polarization

Several properties of these level curves should be mentioned. First a level of
partisanship defines a ‘budget’ line over possible combinations of party strengths.
Thus, the properties of aggregate inequality from the implemented policy addressed
in Corollary 7 can be seen graphically in Figure 3. Second, given that the parties have
symmetric strengths, an increase in either party’s strength increases polarization and

thus aggregate inequality. That is
ol
—|s4=0 > 0.
8(7,;| 4=0

Furthermore, for o; < % + o_;, a small increase in party i’s strength increases the

aggregate inequality arising from the implemented policy. That is

oI

80'1', ‘a’i<%+a_,~ > 0.
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Our results on inequality and political polarization are closely related to the
incentive, created by party identification, to freeze out a portion of the opposition
party’s loyal voters with a zero transfer. Freezing out opposition voters is also closely
related to the classic issue of the tyranny of the majority, in which a majority of voters
expropriates from a minority. In Laslier (2002), a minority is frozen out only if a
single voter segment contains a majority of voters. In contrast, in our model the
expected measure of the set of voters frozen out by the implemented policy depends
on the parties’ strengths and is increasing in the level of political polarization. That
is tyranny is increasing in polarization.

Corollary 9: The expected measure of the set of voters that receive a zero
transfer from the implemented policy is ﬂé—l That is tyranny is increasing
in the political polarization measure P (-, ).

Proof: From Theorem 1, for each segment j € A4 of party A’s loyal voters
the probability of receiving a zero transfer from the implemented policy
is l'zﬂ (af;l). Similarly for each segment & € B of party B’s loyal voters
the probability of receiving a zero transfer from the implemented policy is

1494 (ak). The result follows directly. Q.E.D.

3.3 Conclusion

This paper extends Myerson's (1993) model of redistributive politics to allow for
heterogeneous voter loyalties to political parties. Parties segment voters by the party
with which they identify, if any, and the intensity of their attachment, or “loyalty,”
to that party. We find that voters pay a price for party loyalty. For a given distri-
bution of voters’ attachments to the political parties, in the implemented policy, the
segment of swing voters has the highest expected transfer and expected utility, and
the expected transfers and utilities for loyal voter segments are strictly decreasing in
the intensity of attachment. Using our measure of “party strength,” based on both

the sizes and intensities of attachment of a party’s loyal voter segments, we demon-
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strate that each party’s representation in the legislature is increasing (decreasing)
in its own (opponent’s) party strength. In addition, parties poach a subset of the
opposition party’s loyal voters, in an effort to induce those voters to vote against the
opposition party. The level of inequality in and the size of the set of opposition party
voters frozen out by a party’s equilibrium redistribution schedule are increasing in
the opposition party’s strength.

We also develop a measure of “political polarization” that is increasing in the sum
and symmetry of the party strengths, and find that aggregate inequality is increasing
in political polarization. That is, higher levels of partisanship and more symmetry
in the parties’ strengths generate inequality. In addition, the expected measure of
the set of voters that receive a zero transfer (and, hence, their secure utility level)
from the implemented policy is increasing in the level of political polarization. In
this sense polarization increases tyranny.

There are several potential directions for future research based on our model
that appear to be particularly fruitful. The model can be applied to shed light on
topics previously studied in the redistributive politics literature, such as candidate
valence issues. In addition, this paper’s focus on identifiable voter segments is imme-
diately applicable to the study of transfers targeted by geographical region or other

identifiable characteristics.
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3.5 Appendix

Sahuguet and Persico (2004) establish an equivalence between the two-party
model of redistributive politics and an appropriately chosen two-bidder all-pay auc-
tion. We now extend this result to establish an equivalence between the two-party
model of redistributive politics with segmented loyal voters and an appropriately
chosen set of two-bidder independent simultaneous all-pay auctions.

We begin by reviewing the characterization of n simultaneous two-bidder all-pay
auctions with complete information. Let Fij represent bidder ¢’s distribution of bids
for auction j, and Uf represent the value of auction j for bidder ¢. Each bidder ¢’s

problem is

n

mex 3 [ [F @) o] ar?

{Fl}o =
Since each auction is independent, the unique equilibrium is for each bidder to choose
Fij as if auction j was the only auction. The case of a single all-pay auction with
complete information is studied by Baye, Kovenock, de Vries (1996). Thus, for each

auction j and bidder 7 we have the following three cases

If vl >, Fl(e) = & z € [0,v7)]
vaff:v’_'i Fg($)=-§' xE[O,UZ]

—i —i

If vl <o, Ff(x)=(v—%’,ﬁ>+v—§— z € [0,7]]

In addition, without a binding cap on bids, there is no reason to construct an n-
variate distribution function from these marginal distributions.!?

Now consider two-party redistributive competition with segmented loyal voters,
and assume that the parties face the budget constraint

s .
Z mj/ zdF] <1,
0

jeAUSUB

12Wwithout a binding cap on bids, it is trivial to construct an n-variate distribution since any n-
variate copula is sufficient. Given the Fréchet-Hoeffding bounds for n-variate copulas, the range
of sufficient n-variate copulas is quite large. For this reason the n-variate joint distribution adds
nothing to the problem analyzed here. See Nelson (1999) for an introduction to copulas.
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where Fij represents party ¢’s distribution of offers for voters in segment j and m; > 0
is the measure of voters in segment j such that 3, 4 5 5™, = 1. In the discussion
that follows the notation for the intensity of loyal voter attachment is modified in
the following way: for each segment j € AUSUB if j = S, the swing segment, or
j € B, one of party B’s loyal voter segments, then a]/; = 0, thus 511 = 1, and the
same holds for a% if ¥ € AU S. Each party i’s problem is
o fx, .
‘max Z mj/ F7, (—J") dF?
{7} jeavsun jeasus Y0 5

subject to the budget constraint 3. 4,587 f5 zdF} (z) < 1. The associated

Lagrangian is

) ) 5
‘max Z [nlei/ [/\lFiz (3’ ;'L) -z
{7} e avsun jeaTsus 0 L 5

We can now proceed to the proof of the equivalence between the two-party model

dFY (2)| + N

of redistributive politics with segmented loyal voters and an appropriately chosen
set of two-bidder independent simultaneous all-pay auctions. In the discussion that
follows, Ef and _s_f are the upper and lower bounds of candidate i’s distribution of

offers in segment j.

Theorem 2: For each feasible distribution of voters’ attachments to the
political parties, there exists a one-to-one correspondence between the equi-
libria of the two-party model of redistributive politics with segmented loyal
voters and the equilibria of a unique set of appropriately chosen two-bidder

independent simultaneous all-pay auctions.

Proof: The proof, which is contained in the following lemmas, is instructive

in that it establishes the uniqueness of the equilibrium given in Theorem 1.

The first three lemmas follow from lines drawn by Baye, Kovenock, and de Vries

(1996).

s

Lemma 1: For each j € AUSUB,

& :
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Lemma 2: In any equilibrium {FJ no Ff can place an atom

} jEAUSUB
in the half open interval (0, Sz]

Lemma 3: For each j € AUSUB and for each i € {4, B}, + x FJ (MJ >—-x

is constant V z € (0, 51]
The following lemma characterizes the relationship between A; and A_;.

Lemma 4: In equilibrium A\; = A_;.

Proof: By way of contradiction suppose A; # A_;. In any equilibrium each

party must use their entire budget, thus

z mj/ zdF! (z Z m]/ zdF, ( (3.2)

JEAUSUB jEAUSUB

But, from lemmas 2 and 3, it follows that

&,
dF} (z) = A=t T (3.3)
forall z € (0, B’f], and
. d -
dF?, (z) = )\iisl—da: (3.4)

J
-1

for all z € (O, s i:l' Substituting equations 3 and 4 into equation 2, and

applying lemma 1 we have

Z mj/ - T;’d:c—)\ Z m]/ :c—d’c

JE.AUSUB jeAUSUB

which is a contradiction since

57
&8

Z m]/‘s]"' a:(s;’dm— Z mj/ :L——dx

jeAUSUB jeAUSUB

but X; # A_;. Q.E.D.

Let A= )\; = A_;. The following lemma establishes the value of 3.
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Lemma 5: § = é/{z- Vi and j.
Proof: From lemmas 3 and 4, we know that for each party i and any segment

J

is constant V z € (O,Ef] It then follows that party i would never use a
strategy that provides offers in (%, oo) since an offer of zero strictly dominates

such a strategy. The result follows directly. Q.E.D.

The following lemma establishes that there exists a unique A that satisfies the

budget constraint.

Lemma 6: There exists a unique value for A, and this value is

1-3jea mi(l“‘s%)“ZkeB mk(l—é’g) _ l-ogs—0p
2 - 2 :

Proof: The budget constraint determines the unique value of A. Thus, A
solves

%’{ &
A Z mj/ x-(—s]—.’d;vzl
0 i

JjEAUSUB
Solving for A we have that

N 143 sea™; (5%—1)+2k€5mk(5§—1) 1-g4—o0p
- 2 - 2

Q.ED.

This completes the proof of Theorem 2.

To construct the unique Nash equilibrium of the redistributive politics game,
note that the intensity of attachment parameters, a{ =1- OZ , are isomorphic to
differences in bidders’ valuations in an all-pay auction. Thus, in each segment of

1_lg_,
voters loyal to party —i, party i places mass equal to A—i\h =1—94_; at 0. Then
A
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letting z = %, the unique equilibrium is for party A to offer redistribution according

to
Vied Fj(m)=z—;;
Fi(@)=%

VkeB Fh(z)=(1-06k)+ %

and for party B to offer redistribution according to

VkeB

z € [0,267]
z € [0, 2|
z €0, 2]

z € [0, z0%]
z € [0, 2]
z € [0, 2]
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